MBA Business Foundations, Quantitative Methods: Session Four

Boris Babic, Assistant Professor of Decision Sciences

INSEAD
The Business School
for the World ${ }^{\circ}$

Today

Functions
Linear
Inverse
Two equations
Quadratic
Exponents
Exponents

```Logarithms
```

Logarithmic functions
Logarithmic and exponential equations
Case: pricing
Derivatives
Derivatives Optimal decisions
Case: production Statistics
Uncertainty Probability \& statistics

```Normal distribution

\section*{Sesion 4
Soindeses
Analy}
- We are given some function \(f(x)\) and want to know something about its behavior at \(x_{1}\).
- Find \(f^{\prime}(x)\).
- Find \(f^{\prime}\left(x_{1}\right)\).
- If \(f^{\prime}\left(x_{1}\right)>0\) the function is increasing "at that point".
- \(f^{\prime}\left(x_{1}\right)<0\) the function is decreasing "at that point".
- if for all \(x, f^{\prime}(x)>0\) the function is increasing.
- if for all \(x, f^{\prime}(x)<0\) the function is decreasing.
- \(f^{\prime}\left(x_{1}\right)=0\) the function is at a maximum or minimum (most likely).

\section*{Session 4 \\ (Derivatives) \\ Example}

\section*{Boris Babic,}

INSEAD

Optimal
decisions
Case:
production
Statistics

Consider the function \(f(x)=2 x^{3}+x^{2}-4 x-3\)

- Find \(f^{\prime}(x)\).
- Evaluate \(x\) at \((-2,-1,0,1,1.5)\).

\section*{Session 4 \\ (Derivatives) \\ Solution}

\section*{Boris Babic,}

INSEAD

Optimal
decisions

\section*{Case:}
production
Statistics
- \(f^{\prime}(x)=6 x^{2}+2 x-4\)
- \(f^{\prime}(-2)=16\)
- \(f^{\prime}(-1)=0\)
- \(f^{\prime}(0)=-4\)
- \(f^{\prime}(1)=4\)
- \(f^{\prime}(1.5)=12.5\)
- Consider a function which takes time as its input and gives us a car's distance traveled as its output.
- The first derivative of such a function corresponds to the car's velocity.
- The second derivative would be the derivative of the derivative.
- This corresponds to the car's acceleration.
- It measures how the rate of change is itself changing.
- Graphically, this corresponds to a function's curvature degree of concavity/convexity.
- Formally, there is nothing new - to take the second derivative, treat the derivative function as your original function, and apply the rules from last class!

\section*{Concavity/convexity}
- A function is called convex on an interval \([a, b]\) if the line segment between any two points on the graph of the function over that interval lies above or on the graph. Ex: \(x^{2}\).
- If such line segment is below the graph of the function, it is concave.
- Important wherever "marginal" values are relevant - utility, revenue, economies of scale, etc.
- We denote the second derivative of \(f(x)\) as \(f^{\prime \prime}(x)\) or
\[
\frac{d}{d x} \frac{d}{d x} f(x)=\frac{d^{2}}{d x^{2}} f(x)
\]
- If \(f^{\prime \prime}(x)>0\) for all \(x\) in the interval \([a, b]\), then \(f(x)\) is convex on \([a, b]\). Ex: \(x^{2}\).
- If \(f^{\prime \prime}(x)<0\) for all \(x\) in the interval \([a, b]\), then \(f(x)\) is concave on \([a, b]\). Ex: \(x^{1 / 2}\).

\section*{Maximum/minimum of a function}

Optimal decisions

Case: production

Statistics

To find potential max-min points of a function \(f(x)\) :
- Compute the (first) derivative \(f^{\prime}(x)\)
- Solve the equation \(f^{\prime}(x)=0\). The points \(x^{*}\) obtained are possible candidates for maxima/minima.
\(\longrightarrow\) First Order Condition (FOC)
- Compute the second derivative \(f^{\prime \prime}(x)\)
- If \(f^{\prime \prime}\left(x^{*}\right)>0\) then \(x^{*}\) is a (local) minimum

If this is true for all \(x\), then global minimum
- If \(f^{\prime \prime}\left(x^{*}\right)<0\) then \(x^{*}\) is a (local) maximum

If this is true for all \(x\) then global maximum
\(\longrightarrow\) Second Order Condition (SOC)

\section*{Example}

Boris Babic,
INSEAD

Optimal decisions

\section*{Case:}
production
Statistics
Identify the local maximum/minimum of the function:
\[
f(x)=2 x^{3}+x^{2}-4 x-3
\]


\section*{Session 4 (Derivatives) \\ Solution}

Optimal decisions

\section*{Case:}
production
Statistics
- \(f(x)=2 x^{3}+x^{2}-4 x-3\)
- \(f^{\prime}(x)=6 x^{2}+2 x-4\)
- \(f^{\prime \prime}(x)=12 x+2\)
- FOC: \(6 x^{2}+2 x-4=0 \rightarrow x^{*}=-1\), and \(x^{*}=2 / 3\).
- SOC:
\(12(-1)+2<0(-1\) is a maximum \()\)
\(12(2 / 3)+2>0,(2 / 3\) is a minimum \()\).

\section*{}

Boris Babic,
INSEAD

Optimal
decisions

\section*{Case:}
production
Statistics

- \(f(x)=a x^{2}+b x+c\)
- \(f^{\prime}(x)=2 a x+b \rightarrow\) FOC: \(2 a x+b=0 \rightarrow x_{0}=\frac{-b}{2 a}\)
- \(f^{\prime \prime}(x)=2 a\)
- if \(a>0, x_{0}=\frac{-b}{2 a}\) is global minimum (b/c \(\left.f^{\prime \prime}(x)=2 a>0\right)\)
- if \(a<0, x_{0}=\frac{-b}{2 a}\) is global maximum (b/c \(f^{\prime \prime}(x)=2 a<0\) )

\section*{Sesion 4
Senimeses
Application of derivatives in economics}
- Consider profit \((p)\) as a function of advertising cost \((c)\).
\(p=f(c)=-c^{2}+3 c-2\)
At what level of advertising will the profit be maximized?
- Consider a demand function, with price ( \(p\) ) and quantity demanded ( \(q\) ).
\(p=f(q)=120-4 q\)
Write revenue as a function of quantity demanded.
To maximize revenue, how many units should we sell?

Which price should we set?

Session 4
(Derivatives)

\section*{Solutions}

\section*{Boris Babic,}

INSEAD

Optimal
decisions

\section*{Case:}
production
Statistics
- Problem 1: \(\arg \max f(c)=3 / 2\) (you may often see this notation).
- Problem 2:
a. Revenue \(=\) price \(\times\) quantity \(=-4 q^{2}+120 q\)
b. \(-4 q^{2}+120 q=0 \rightarrow q^{*}=15\) units
c. \(f\left(q^{*}\right)=120-4 \times 15=60 \rightarrow p^{*}=60\)

\section*{Session 4 (Derivatives) \\ Marginal profit}

- Discrete case, where \(\pi(q)\) is profit given \(q\) units and \(m \pi(q)\) marginal profit at \(q: m \pi(q)=\pi(q+1)-\pi(q)\)
- "Profit earned by producing one unit above q"
- Note this is also the rate of change of \(\pi(q)\) at \(q \rightarrow \frac{\pi(q+1)-\pi(q)}{q+1-q}\)
- Marginal profit is given by the slope of the profit function at \(q\).

\section*{Sesion
Sendines
\()\)\(\quad\) Marginal profit}

\section*{Boris Babic,}

INSEAD

Optimal
decisions

\section*{Case:}
production

\section*{Statistics}

- Continuous case: \(m \pi(q)=\pi^{\prime}(q)\)
"Profit earned by producing a little more than q"
[What is a little more?]

\section*{Session 4 (Derivatives) \\ Bonus example: marginal revenue}
- Given the following demand function,
\[
p=-5 q^{2}+30 q+7
\]
- find the marginal revenue function, where price \(=p\) and quantity \(=q\).
- What is the marginal revenue at \(q=2,3,5\) ?
- For which \(q\) do we maximize revenue?

\section*{Session 4 \\ (Derivatives) \\ Solution}

\section*{Boris Babic,}

INSEAD

- \(f^{\prime}(q)=-10 q+30\)
- \(f^{\prime}(2)=10, f^{\prime}(3)=0, f^{\prime}(5)=-20\)
- \(\arg \max f(q)=3\)

\title{
Motorycle Helmets with Bluetooth (B) : Production
}

\section*{Revisit 1d}
- Find produced quantity as a function of market price how much will the firm supply at different price levels.
- \(\operatorname{pr}(q)=\) revenue - cost \(=p \times q-\left(1,000,000+0.002 q^{2}\right)\)
- Profit is maximized when
\[
\operatorname{pr}^{\prime}(q)=0 \rightarrow p=0.004 q \rightarrow q=p / 0.004 \rightarrow q=250 p
\]
- So the actual value of profit at different price levels is \(p(250 p)-\left(1,000,000+0.002(250 p)^{2}\right)=125 p^{2}-1,000,000\)
- So profit is positive if
\[
125 p^{2}-1,000,000>0 \rightarrow p^{2}>8,0000 \rightarrow p>89.44
\]
- So the supply function (!!) is:
\[
s(p)=\left\{\begin{array}{l}
250 p, \text { if } p>89.44 \\
0, \text { if } p<89.44
\end{array}\right.
\]

\section*{Revisit 1d}

Boris Babic,
INSEAD

Optimal
decisions
Case:
production
Statistics

- If \(p<89.44\) the firm is better off by shutting down and producing zero. If \(p>89.44\) the firm is better off by producing \(250 p\). At 89.44 , the firm is indifferent.

\section*{Walmart \(=1 /\)}

Walmart handles more than 1 million customer transactions every hour.

\section*{facebook}

Brands and organizations on Facebook receive 34,722 likes every minute of the day.

\section*{- YouTube}

YouTube users upload 48 hours of new video every minute of the day.
- How to visualize this data?
- How to understand the key components of this data?
\(\rightarrow\) goal of descriptive statistics

\section*{Session 4 \\ The R statistical programming language}

Optimal decisions

Case: production

Statistics
- For the statistics section, we will periodically use the statistical programming language R to perform some basic operations.
- \(R\) is an open source language, written in \(C\) and Fortran.
- It was initially developed at Bell Labs, where it was known (creatively) as S.
- Today it is the most widely used language among statisticians.
- You can download a free distribution on the R project web page (www.r-project.org/) together with RStudio (rstudio.com) which is the leading IDE for \(R\) (basically a gui).
- In this class, however, we will use the online implementation rdrr: https://rdrr.io/snippets/
- You do not need to download anything!
- Does anyone know why it is called rdrr? See here.

\section*{Measures of location}

Optimal decisions

Case: production

Statistics
"If I was allowed one number to describe my dataset, what would it be?"
- Three notions:
- Mean: average value, \(\mathrm{E}[X]=\frac{1}{n}\left[x_{1}+x_{2}+\ldots+x_{n}\right]\) R: mean()
- Median: the middle value when the dataset is ordered from smallest to largest
R: median()
- Mode: the value with highest frequency R: mode.insead()
But we have to write the mode function first:
mode.insead <- function(x) \{
ux <- unique (x)
ux[which.max(tabulate(match(x, ux)))]
\}
- Feel free to copy/paste

\section*{Measures of location}
- Go to: https://rdrr.io/snippets/
- Consider:
```

mydata <- c(1, 2, 3, 3, 4, 5, 6)

```
[the simplest type of data structure in \(R\) ]
- Find the mean, median, and mode of mydata. Hint: for mode, you will have to write in the function first.
- Here it is again:
    mode.insead <- function( \(x\) ) \{
    ux <- unique (x)
    ux[which. max (tabulate(match(x, ux)))]
\}
- Solution:
mode.insead <- function(x) \{
    ux <- unique (x)
    ux[which.max(tabulate(match(x, ux)))]
\}
mydata <- \(c(1,2,3,3,4,5,6)\)
print(c(mean(mydata), median(mydata), mode.insead(mydata)))
[1] 3.4285713 .0000003 .000000
- Note: We instruct R to print a vector just to be concise. You can just plug in mean, mode, and median and run it.

\section*{Session 4 \\ Example}

\section*{Boris Babic,}

Given the following data:
\[
10,3,2,15,1,3,4,5,8,2,12,20,3,5,10
\]
compute the mean, median and mode by hand, then verify in \(R\).

\section*{Session 4 \\ Example}

Given the following data:
\[
10,3,2,15,1,3,4,5,8,2,12,20,3,5,10
\]
compute the mean, median and mode by hand, then verify in \(R\).

\section*{Solution:}
```

mode.insead <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
mydata <- c(10,3,2,15,1,3,4,5,8,2,12,20,3,5,10)
print(c(round(mean(mydata),2), round(median(mydata),2),
round(mode.insead(mydata),2)))
[1] 6.87 5.00 3.00

```

We have also instructed R to round the output to two decimal points.

\section*{Measures of dispersion}

\section*{Boris Babic,}

INSEAD

Optimal
decisions
Case:
production
Statistics

How spread out is my data?
- Maximum, minimum, range
```

 R: max(), min(), max() - min()
    ```
- Variance

R: var.insead()
var.insead \(=\) function \((x)\{\operatorname{var}(x) *(\) length \((x)-1) /\) length \((x)\}\)
- Standard deviation

R: sqrt(var.insead())

\section*{Variance and standard deviation}
- We will often use \(\mu\) to denote the mean, and \(\sigma\) to denote standard deviation.
- Variance (when all outcomes are equally likely):
\[
\operatorname{Var}=\frac{1}{n} \sum_{i=1}^{n}(x-\mu)^{2}
\]
- Standard deviation: \(\sigma=\sqrt{\mathrm{Var}}\)
[So: Var \(=\sigma^{2}\) ]
- Rougly speaking, \(95 \%\) of the data will be contained in the interval spanning \(\pm 2\) standard deviations from the mean.

Consider the following data, drawn from a uniform distribution in R using the command round \((\mathrm{runif}(10) * 10,0)\) :
\[
8,1,2,4,8,6,2,6,9,2
\]

Find mean, variance, and standard deviation. Note:
\[
\begin{aligned}
& \text { var.insead }=\text { function }(x) \\
& \quad\{\operatorname{var}(x) *(\operatorname{length}(x)-1) / \text { length }(x)\}
\end{aligned}
\]

\section*{Solution}

Statistics
var.insead = function(x)
\(\{\operatorname{var}(\mathrm{x}) *(\) length \((\mathrm{x})-1) /\) length \((\mathrm{x})\}\)
mydata <- c \((8,1,2,4,8,6,2,6,9,2)\)
mean(mydata)
var.insead(mydata)
sqrt(var.insead(mydata))
[1] 4.8
[1] 7.96
[1] 2.821347

\section*{Session 4 (Derivatives) \\ Today}

Boris Babic, INSEAD

Optimal

\section*{decisions}

Case:
production
Statistics

Logarithms

Derivatives
Optimal decisions
Case: production
Statistics

Uncertainty Probability \& statistics
Normal distribution


The Business School for the World \({ }^{\oplus}\)
Europe | Asia | Middle East```

