MBA Business Foundations, Quantitative Methods: Session Three

Boris Babic, Assistant Professor of Decision Sciences

INSEAD
The Business School
for the World ${ }^{\circ}$

Today

Functions
Linear
Two equations
Quadratic
Basics nverse nverse
Exponents
Exponents

```Exponential functions
```

Logarithmic functions
Logarithms
Logarithmic functions
Logarithmic and exponential equations
Case: pricing
Derivatives
Optimal decisions

```Case: productionStatistics
```

Uncertainty Probability \& statistics
Normal distribution

- A logarithmic function is the inverse of an exponential function:
If $\log _{b} x=c$ then $b^{c}=x$ and $\log _{b} b^{x}=x$.
- Special case where the base b of the exponential is e.
- We call it the natural logarithm (natural \log) and it has its own notation: $\log _{e} x=\ln x$.

Session 3
 (Logarithms)
 Logarithms: review

Boris Babic
INSEAD

Logarithmic
functions
Exponential
and
Logarithmic
Equations
Case: pricing Derivatives

Natural log is the inverse of the exponential function of base e : $e^{x}=c \leftrightarrow \ln c=x$ or $\ln e^{x}=x$.

Session 3
 Logarithmic applications

Boris Babic,
INSEAD

Logarithmic functions

Exponential and
Logarithmic Equations

Case: pricing
Derivatives

- Logarithms are often used for measurement scales, where we need to compare orders of magnitude.
- Magnitude 6 earthquake is 10 times stronger than magnitude 5 earthquake. Magnitude 7 earthquake is $10 \times 10=100$ times strong than magnitude 5 earthquake.

Order in which websites are presented to you when you search on Google

Richter scale for earthquakes

Decibels for sound

Logarithms are also present in many "laws" in economics, statistics, finance, psychology, etc.

Economics: economies of scale

Psychology: how human beings make decisions (Hick's law)

$$
T=b \log _{2}(n+1)
$$

T : time to react
n : number of choices

- How to solve equations that involve exponentials and logarithms?
- Formulas at our disposal:

$$
\begin{aligned}
& e^{x}=e^{y} \leftrightarrow x=y \\
& \ln x=\ln y \leftrightarrow x=y \\
& e^{\ln x}=x \\
& \ln \left(e^{y}\right)=y
\end{aligned}
$$

Boris Babic,
INSEAD

Logarithmic

functions

Exponential and
Logarithmic Equations

Case: pricing
Solve for x :
(1) $e^{x}=p$
(2) $e^{3 x}=403.43$
(3) $\ln (x+1)=2$
(4) $\ln (3 x-2)=5$

- more challenging -
(5) $\ln (x)+\ln (x+6)=\ln (5 x+12)$
(6) $\ln (10)-\ln (7-x)=\ln (x)$

Boris Babic,
INSEAD

Logarithmic

functions

Exponential
and
Logarithmic Equations

Solve for x :

- $e^{x}=p \rightarrow x=\ln p$
- $e^{3 x}=403.43 \rightarrow x=2$
- $\ln (x+1)=2 \rightarrow x=e^{2}-1$
- $\ln (3 x-2)=5 \rightarrow x=\frac{1}{3}\left(e^{5}+2\right) \approx 50.138$

Boris Babic,
INSEAD

Logarithmic

functions

Exponential
and
Logarithmic
Equations

$$
\begin{aligned}
\ln (x)+\ln (x+6) & =\ln (5 x+12) \\
\ln (x(x+6)) & =\ln (5 x+12) \\
x(x+6) & =5 x+12 \\
x^{2}+6 x & =5 x+12 \\
x^{2}+x-12 & =0 \\
(x-3)(x+4) & =0 \rightarrow x=3
\end{aligned}
$$

Session (Logaithms) Led \quad Ex Solution

Boris Babic,
INSEAD

Logarithmic
functions
Exponential and
Logarithmic Equations

Case: pricing
Derivatives

$$
\begin{aligned}
\ln (10)-\ln (7-x) & =\ln (x) \\
\ln \left(\frac{10}{7-x}\right) & =\ln x \\
\left(\frac{10}{7-x}\right) & =x \\
10 & =x(7-x) \\
10 & =7 x-x^{2} \\
x^{2}-7 x+10 & =0 \\
(x-5)(x-2) & =0 \\
\rightarrow x=2, x=5 &
\end{aligned}
$$

Summary of logs and exponents

Logarithmic

functions

Exponential
and
Logarithmic Equations

Case: pricing
Derivatives

- Exponential function is a function of the type $f(x)=b^{x}$
- Logarithmic function is the inverse of this function, $\log _{b}\left(b^{x}\right)=x$
- Applications: for exponents, compounded growth (GDP, population growth, interest); for logarithms, order of magnitude scales, statistics, utility functions.
- Solving exponential and logarithmic equations.
- Special case of $b=e \approx$ 2.71828: $f(x)=e^{x}$, and $f(x)=\ln x$.

Boris Babic,
INSEAD

Logarithmic
functions

Exponential
and
Logarithmic
Equations
Case: pricing
Derivatives

Case 1: Motorcycle helmets with bluetooth (A): pricing bluetooth chips

Rate of change of linear functions

Boris Babic,
INSEAD
Example of linear function: $f(x)=2 x-1$
Logarithmic functions

Exponential and

Logarithmic

 EquationsCase: pricing
Derivatives

- Rate of change: $\frac{\text { change in } f(x)}{\text { change in } x}$
- If x changes from 0 to 5 what values does $f(x)$ take?
- What is the rate of change here?
- Does it depend on the points we pick? What does it correspond to?

- The steeper the curve, the larger the rate of change
- Slope $=0$, horizontal line. Slope $=\infty$, vertical line.

Rate of change of nonlinear functions

- Like linear functions, would like to find the slope of the curve.
- But the "slope" of the curve is changing along the curve.
- Thus, rate of change will be point specific (point??).
- Given by the slope of the tangent line at that "point."

Rate of change of nonlinear functions

Boris Babic,
INSEAD

Logarithmic functions

Exponential
and
Logarithmic Equations

Case: pricing

- The slope of the tangent can be viewed as the slope of a (shrinking) chord (green) - secant line.

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}
$$

- This gives us average rate of change over a (small) interval.
- Ex: average speed (per minute).

Derivatives

Logarithmic

functions

Exponential and
Logarithmic Equations

Case: pricing
Derivatives

- What if we want instantaneous speed (huh?)
- Find the value as the chord shrinks to 0 .
- That is, as $\Delta x \rightarrow 0$ and $\Delta y \rightarrow 0$.
- Derivative of f at x :

$$
f^{\prime}(x)=\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

where $h=\Delta x$ and $[f(x+h)-f(x)]=\Delta y$.

- Ex: use this definition to find $\frac{d}{d x} x^{2}$.
- Ex: use it to find $\frac{d}{d x} \log x$. Hint: $\lim _{k \rightarrow 0} \frac{\log (1+k)}{k}=1$.

Logarithmic

functions
Exponential
and
Logarithmic
Equations
Case: pricing
Derivatives

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 h x+h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h \\
& =2 x
\end{aligned}
$$

Boris Babic,

INSEAD

Logarithmic functions

Exponential and
Logarithmic Equations

Case: pricing Derivatives

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\log (x+h)-\log (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\log \left(\frac{x+h}{x}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\log \left(1+\frac{h}{x}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\log \left(1+\frac{h}{x}\right)}{\frac{h}{x}} \cdot \frac{1}{x} \\
& =1 \cdot \frac{1}{x}=\frac{1}{x}
\end{aligned}
$$

Session 3 (Logarithms)

Logarithmic functions

Exponential and
Logarithmic Equations

Case: pricing Derivatives

Rules for differentiation

- $f(x)=a \rightarrow f^{\prime}(x)=0$, and $f(x)=x \rightarrow f^{\prime}(x)=1$
- $f(x)=b x \rightarrow f^{\prime}(x)=b$
- $f(x)=x^{n} \rightarrow f^{\prime}(x)=n x^{n-1}$
- $f(x)=b x^{n} \rightarrow f^{\prime}(x)=b n x^{n-1}$
- $f(x)=x \rightarrow f^{\prime}(x)=1$
- $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
- $[f(x) g(x)]^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
- $f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$
- $[\log (x)]^{\prime}=1 / x$, and $\left(e^{x}\right)^{\prime}=e^{x}$

Boris Babic,
INSEAD

Logarithmic

functions

Exponential
and
Logarithmic
Differentiate the following functions:

- $f(x)=7 x+5$

Derivatives

- $f(x)=x^{2}+3 x+4$
- $f(x)=5 x^{7}+3 x^{4}+x^{2}+4 x+100$
- $f(x)=e^{3 x^{2}}$

Session 3
 (Logarithms)
 Practice Solutions

Differentiate the following functions:

- $f(x)=7 x+5 \rightarrow f^{\prime}(x)=7$
- $f(x)=x^{2}+3 x+4 \rightarrow f^{\prime}(x)=2 x+3$
- $f(x)=5 x^{7}+3 x^{4}+x^{2}+4 x+100 \rightarrow f^{\prime}(x)=$ $35 x^{6}+12 x^{3}+2 x+4$
- $f(x)=e^{3 x^{2}}$

$$
\begin{aligned}
& f(x)=e^{x}, g(x)=3 x^{2} \rightarrow f^{\prime}(g(x)) g^{\prime}(x)=e^{3 x^{2}} \cdot 6 x= \\
& 6 x e^{3 x^{2}}
\end{aligned}
$$

- We are given some function $f(x)$ and want to know something about its behavior at x_{1}.
- Find $f^{\prime}(x)$.
- Find $f^{\prime}\left(x_{1}\right)$.
- If $f^{\prime}\left(x_{1}\right)>0$ the function is increasing "at that point".
- $f^{\prime}\left(x_{1}\right)<0$ the function is decreasing "at that point".
- if for all $x, f^{\prime}(x)>0$ the function is increasing.
- if for all $x, f^{\prime}(x)<0$ the function is decreasing.
- $f^{\prime}\left(x_{1}\right)=0$ the function is at a maximum or minimum (most likely).

Boris Babic,
INSEAD

Logarithmic

functions

Exponential
and
Logarithmic Equations

Case: pricing
Derivatives

Consider the function $f(x)=2 x^{3}+x^{2}-4 x-3$

- Find $f^{\prime}(x)$.
- Evaluate x at $(-2,-1,0,1,1.5)$.

Session 3
 (Logarithms)
 Solution

Boris Babic

INSEAD

Logarithmic

functions

Exponential

and
Logarithmic

- $f^{\prime}(x)=6 x^{2}+2 x-4$
- $f^{\prime}(-2)=16$
- $f^{\prime}(-1)=0$
- $f^{\prime}(0)=-4$
- $f^{\prime}(1)=4$
- $f^{\prime}(1.5)=12.5$

Session 3
 (Logarithms)
 Today

Boris Babic, INSEAD

Logarithmic

functions

Exponential and
Logarithmic Equations

Case: pricing
Derivatives

Functions

Linear

Inverse

Two equations

Quadratic

Exponents

Application: interest rates
Exponential functions
Logarithmic functions

Logarithms

Derivatives
Optimal decisions
Case: production
Statistics

Uncertainty Probability \& statistics
Normal distribution

The Business School for the World ${ }^{\oplus}$
Europe | Asia | Middle East

