MBA Business Foundations, Quantitative Methods:
 Session Two

Boris Babic,
 Assistant Professor of Decision Sciences

INSEAD
The Business School
for the World ${ }^{*}$

Today

```
    Functions
    Linear
Basics Inverse
    Two equations
Quadratic
```


Exponents

```
Exponents Application: interest rates
Exponential functions
Logarithmic functions
Logarithmic functions
Logarithms Logarithmic and exponential equations
Case: pricing
Derivatives
Derivatives
Optimal decisions
Case: production
Statistics
Uncertainty Probability \& statistics Normal distribution
```


Exponents

- Essential for analysis of interest rates and growth.
- Denotes repeated multiplication of the same quantity

Exponents

Babic, INSEAD

Exponents
Application: interest rates

Exponential functions

Examples:

- 3^{4}
- 1.5^{2}
- $\left(\frac{1}{2}\right)^{2}$
- $(a+2)^{2}$

Solutions:

- $3^{4}=81$
- $1.5^{2}=2.25$
- $\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{4}\right)$
- $(a+2)^{2}=a^{2}+4 a+4$ (what kind of function?)

Some examples of exponential phenomena

Exponents

Products

$$
b^{c} \cdot b^{d}=b^{c+d}
$$

Powers

$$
\left(b^{c}\right)^{d}=\left(b^{d}\right)^{c}=b^{c \cdot d}
$$

Negative exponents

$$
b^{-c}=\frac{1}{b^{c}}
$$

Quotients

$$
\frac{b^{c}}{b^{d}}=b^{c-d}
$$

Zero power

$$
b^{0}=1
$$

Roots

$$
\sqrt[n]{b}=b^{1 / n}
$$

Exponents

Application:

interest

 ratesExponential functions
Logarithmic functions

The formulas in practice

Simplify the following:

- $\left(3^{4}\right)^{2}=$
- $\frac{6^{2}}{6^{5}}=$
- $3^{0}=$
- $27^{2 / 3}=$
- $\left(\frac{x}{y}\right)^{3} \cdot\left(\frac{x}{z}\right)^{-2}$
- $\frac{x^{3} y^{2}}{x^{5} y^{-2}}$
- $\frac{24 x^{5} y^{3} z^{7}}{6 x^{3} y^{2} z^{4}}$

Session 2

Exponents

- $\left(3^{4}\right)^{2}=3^{8}$
- $\frac{6^{2}}{6^{5}}=6^{2-5}=6^{-3}=\frac{1}{6^{3}}$
- $3^{0}=1$
- $27^{2 / 3}=\sqrt[3]{27^{2}}$
- $\left(\frac{x}{y}\right)^{3} \cdot\left(\frac{x}{z}\right)^{-2}=\left(\frac{x}{y}\right)^{3} \cdot\left(\frac{z}{x}\right)^{2}=\frac{x^{3} z^{2}}{y^{3} x^{2}}=\frac{x z^{2}}{y^{3}}$
- $\frac{x^{3} y^{2}}{x^{5} y^{-2}}=\frac{x^{3} y^{2} y^{2}}{x^{5}}=x^{-2} y^{4}=\frac{y^{4}}{x^{2}}$
- $\frac{24 x^{5} y^{3} z^{7}}{6 x^{3} y^{2} z^{4}}=4 x^{2} y z^{3}$

Simple interest

- I : interest income in one period
- P : capital to invest
- r : interest rate per period
- n : number of periods invested
- $P=\$ 1,000, r=4 \%$, what is I after one year?
- Solution: $\$ 40$
- if $n=3$, what is I ?
- Solution $\$ 120$
- In general, $I=P \cdot r \cdot n$

Exponents
Application: interest rates

Exponential functions

Logarithmic functions

Compound interest, part 1

- (Capital increases by interest every period)
- You invest $\$ 1$ at an annual interest rate $r=4 \%$.
- After year $1: 1+1(0.04)=1.04$
- After year $2: 1.04+1.04(0.04)=1.04(1+0.04)=1.04^{2}$
- After year 3: $1.04^{2}+1.04^{2}(0.04)=1.04^{2}(1+0.04)=1.04^{3}$
- After year $t: 1.04^{t}$

Some notation:

- $P=$ present amount
- $A=$ final amount
- $r=$ interest rate
- $t=$ number of years money is invested.
- General formula: if compounding annually, $A=P(1+r)^{t}$

Compounding could be done:

- Yearly \rightarrow rate/period $=r$
- Semi-annually \rightarrow rate/period $=r / 2$
- Quarterly \rightarrow rate/period $=r / 4$
- Monthly \rightarrow rate/period $=r / 12$
- Some more notation: n number of periods per year
- A more general formula: $A=P\left(1+\frac{r}{n}\right)^{t n}$

Compound interest, part 3

\square

$$
P=A\left(1+\frac{r}{n}\right)^{-t n}
$$

Examples on interest rates, part 1

- $P=\$ 1000, r=4 \%, t=3$ years
- Compare the final amount A for,
- Simple interest
- Compounded annually
- Compounded semi-annually
- Compounded quarterly
- Compounded monthly

Answers:

- $1000 \cdot 0.04 \cdot 3=120 \rightarrow 1000+120=1120$
- $A=P(1+r)^{t} \rightarrow 1000(1+0.04)^{3}=1124.87$
- $A=P(1+r / n)^{t n}=1000(1+0.04 / 2)^{3 \cdot 2}=1126.12$
- $A=P(1+r / n)^{t n}=1000(1+0.04 / 4)^{3 \cdot 4}=1126.83$
- $A=P(1+r / n)^{t n}=1000(1+0.04 / 12)^{3 \cdot 12}=1127.27$

Examples on interest rates, part 2

Exponents
Application:

interest

 ratesExponential functions

Logarithmic functions

Exponential functions

$f(x)=b^{x}$ where $b>0, b$ is the base, x is the exponent. (Check: is x^{2} exponential? Why or why not?)

Exponential functions

- All the curves pass through the point $(x, y)=(0,1)$.
- The exponential functions are always above the $f(x)=0$ horizontal line. In fact, that line is an asymptote.
- $f(x) \rightarrow 0$ as $x \rightarrow-\infty$ (when $b>1$), and $f(x) \rightarrow 0$ as $x \rightarrow \infty$ when $0<b<1$.
- Can we have $b<0$? Consider $f(x)=-4^{x}$. What is $f(2)$?, $f(-3)$?, $f(1 / 2)$?
(hint: $\sqrt{-4}=2 i$).

Exponential functions

- If $b>1$, the curve becomes steeper as b increases
- if $0<b<1$, it is the other way around, the curve becomes steeper as the base gets closer to 0 .

Practice

Match each equation with the graph of f, g, h, k :

Exponents

Application: interest rates

Exponential functions

Logarithmic functions

Practice

Match each equation with the graph of f, g, h, k :
(A) $f(x)=2^{x}$
(B) $f(x)=(0.2)^{x}$
(C) $f(x)=4^{x}$
(D) $f(x)=(1 / 3)^{x}$

- Exponential functions can be generalized to $f(x)=a b^{x}$ where a is now a scaling constant of the function.
- Ex: Compound interest when compounded annually.

Recall it is given by $A=P(1+r)^{t}$. Here $a=P, b=(1+r)$, and $x=t$.

- Ex: Compound interest when compounded n times per year. Given by $A=P\left(1+\frac{r}{n}\right)^{t n}$
- Why is this an exponential function of the form $f(x)=a b^{x}$?

$$
\begin{aligned}
& A=P\left[\left(1+\frac{r}{n}\right)^{n}\right]^{t} \\
& \text { Here } a=P, b=\left(1+\frac{r}{n}\right)^{n}, x=t
\end{aligned}
$$

- $f(x)=e^{x}$, where $e \approx 2.71828$, named after Leonhard Euler.

- Examples:
- Finance: continuous compounding: $A=P \cdot e^{r t}$
- Economics: growth rate: $e^{0.03 t}$
- Probability: exponential families (includes normal distribution!)

Building intuition A hypothetical:

Building intuition

 A hypothetical: the infinitely evil loan shark...Exponents
rates

Exponential functions

Logarithmic functions

Building intuition

Building intuition

\square
Suppose you borrow one dollar from an ordinary loan shark that charges 100% interest, n times per year. Then after the year, you will owe:
$\left(1+\frac{1}{n}\right)^{n}$

- In particular, after 1 year:

For $n=1$, you will owe 2 .
For $n=2$, you will owe 2.25
For $n=3$, you will owe 2.37 .
For $n=100$, you will owe 2.704.

- The infinitely evil loan shark: $n=\infty$,

Building intuition

\square

Suppose you borrow one dollar from an ordinary loan shark that charges 100% interest, n times per year. Then after the year, you will owe:
$\left(1+\frac{1}{n}\right)^{n}$

- In particular, after 1 year:

For $n=1$, you will owe 2 .
For $n=2$, you will owe 2.25
For $n=3$, you will owe 2.37 .
For $n=100$, you will owe 2.704.

- The infinitely evil loan shark: $n=\infty$, owe e.
- That is, $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e \approx 2.7182818 \ldots!!$
- Your debt to the infinitely evil loan shark is finitely bounded by e !

Building intuition

- If you borrow A_{0}, after t years, you will owe,

$$
A=\lim _{n \rightarrow \infty} A_{0}\left[\left(1+\frac{1}{n}\right)^{n}\right]^{t}=A_{0} e^{t}
$$

- Now suppose the loan shark charges $(k \cdot 100) \%$ interest continuously.
- Reminder: A_{0} is your starting point, $(k \cdot 100) \%$ is the growth rate, t is the number of periods, and $e=(1+1 / n)^{n}$ as n gets arbitrarily large.
- Then in general you will owe

$$
A=A_{0} e^{k t}
$$

- The growth model involving e appears naturally as the continuous generalization of the compounding interest formula.

Example: growth/decay

- $A=A_{0} e^{k t}$, where $A=$ ending value, $A_{0}=$ initial value, t is elapsed time, and k is the growth/decay rate.
- $k>0$, the amount is increasing (growing); $k<0$, the amount is decreasing (decaying).
- Ex: bacteria grow continuously - i.e., they do not "wait" and then all at once reproduce in the next period.

Logarithmic functions

- A logarithmic function is the inverse of an exponential function
- If $b^{x}=c$ then $\log _{b}(c)=x$
- Natural log: if $e^{x}=c$ then $\ln (c)=x$ where $\ln x=\log _{e} x$

- If $\log _{b}(-k)=c$ then $b^{c}=-k$.
- There are no logs of zero or negative numbers $(x>0)$ (Why?).
- Logs of numbers less than one are negative.
- All curves pass through the point $(x, y)=(1,0)$.
- When x tends to 0 in positive value, $f(x)$ is higher and higher in negative value.
- The vertical line at $x=0$ is an asymptote: a straight line which the graph approaches but never touches. functions

Operations on logs

- $\log _{b}\left(b^{x}\right)=x$
- $b^{\log _{b}(x)}=x$
- $\log _{b}(c \cdot d)=\log _{b} c+\log _{b} d$
- $\log _{b}\left(c^{d}\right)=d \cdot \log _{b} c$
- $\log _{b}(b)=1$
- $\log _{b} 1=0$
- $\log _{b} \frac{c}{d}=\log _{b} c-\log _{b} d$

Example: Bacteria growth

- Problem: A strain of bacteria growing on your desktop doubles every 5 minutes. Assuming that you start with only one bacterium, how many bacteria could be present after 1.5 hours? Hint: $\log \left(e^{x}\right)=x$.

$$
\begin{aligned}
A & =A_{0} e^{k t} \\
& \rightarrow 2=1 \cdot e^{k \cdot 5} \\
& \rightarrow 2=e^{5 k} \\
& \rightarrow \log 2=\log e^{5 k} \\
& \rightarrow \log 2=5 k \\
& \rightarrow \frac{\log 2}{5}=k \\
& \rightarrow k=0.139 \\
& \rightarrow A=A_{0} e^{0.139 \cdot 90} \\
& \rightarrow A=1 \cdot e^{0.139 \cdot 90}=271,034!
\end{aligned}
$$

Example: college savings

The parents of a newborn child want to have $\$ 25,000$ for the child's college education when she is 18 .

At what rate of interest, compounded continuously, must $\$ 10,000$ be invested now to achieve this goal?

Solution: college savings

$$
\begin{aligned}
A & =A_{0} e^{r t} \\
25000 & =10000 e^{r 18} \\
\ln (25000) & =\ln \left(10000 \cdot e^{r 18}\right) \\
\ln (25000) & =\ln (10000)+\ln e^{r 18} \\
\ln (25000) & =\ln (10000)+r 18 \\
\ln (25000)-\ln (10000) & =r 18 \\
\ln \left(\frac{25000}{10000}\right) & =r 18 \\
r & =0.05=5 \%
\end{aligned}
$$

Practice examples

Practice:

- Ex 1: $\log _{5}(4 x+11)=2$
- Ex 2: $\log _{2}(x+5)-\log _{2}(2 x-1)=5$
- Ex 3: $\log _{8}(x)+\log _{8}(x+6)=\log _{8}(5 x+12)$

Hint: get into quadratic form, find positive root

- Ex 4: $\log _{6}(x)+\log _{6}(x-9)=2$
- Ex 5: $\ln (10)-\ln (7-x)=\ln (x)$

Ex 1 Solution

$$
\begin{aligned}
\log _{5}(4 x+11) & =2 \\
4 x+11 & =5^{2} \\
x & =7 / 2
\end{aligned}
$$

```

\section*{Ex 2 Solution}
\[
\begin{aligned}
\log _{2}(x+5)-\log _{2}(2 x-1) & =5 \\
\log _{2}\left(\frac{x+5}{2 x-1}\right) & =5 \\
\left(\frac{x+5}{2 x-1}\right) & =2^{5}=32 \\
x+5 & =32(2 x-1) \\
x & =37 / 63
\end{aligned}
\]

\section*{Ex 3 Solution}

\author{
Boris
}

Babic, INSEAD

Exponents functions
\[
\begin{aligned}
\log _{8}(x)+\log _{8}(x+6) & =\log _{8}(5 x+12) \\
\log _{8}(x(x+6)) & =\log _{8}(5 x+12) \\
x(x+6) & =5 x+12 \\
x^{2}+6 x & =5 x+12 \\
x^{2}+x-12 & =0 \\
(x-3)(x+4) & =0 \rightarrow x=3
\end{aligned}
\]

Exponents functions

\section*{Ex 4 Solution}

Exponents Application: interest rates

Exponential functions

Logarithmic functions

\section*{Ex 5 Solution}
\[
\begin{aligned}
\ln (10)-\ln (7-x) & =\ln (x) \\
\ln \left(\frac{10}{7-x}\right) & =\ln x \\
\left(\frac{10}{7-x}\right) & =x \\
10 & =x(7-x) \\
10 & =7 x-x^{2} \\
x^{2}-7 x+10 & =0 \\
(x-5)(x-2) & =0 \\
\rightarrow x=2, x=5 &
\end{aligned}
\]


\section*{Exponents}

Application: interest rates

Exponential functions

Logarithmic functions

Today
\begin{tabular}{|c|c|}
\hline Basics & \begin{tabular}{l}
Functions \\
Linear \\
Inverse \\
Two equations Quadratic
\end{tabular} \\
\hline Exponents & \begin{tabular}{l}
Exponents \\
Application: interest rates Exponential functions Logarithmic functions
\end{tabular} \\
\hline Logarithms & \begin{tabular}{l}
Logarithmic functions \\
Logarithmic and exponential equations Case: pricing \\
Derivatives
\end{tabular} \\
\hline Derivatives & Optimal decisions Case: production Statistics \\
\hline Uncertainty & Probability \& statistics Normal distribution \\
\hline
\end{tabular}

Logarithms
Logarithmic and exponential equations Case: pricing Derivatives

Optimal decisions Case: production Statistics

Probability \& statistics Normal distribution


The Business School for the World \({ }^{\circledR}\)
Europe | Asia Middle East```

