MBA Business Foundations, Quantitative Methods:
 Session One

Boris Babic,
 Assistant Professor of Decision Sciences

INSEAD
The Business School
for the World ${ }^{\text {b }}$

- Profession of Decision Sciences
- My research is in Bayesian statistics, ethics of $\mathrm{AI} / \mathrm{ML}$
- Postdoc, California Institute of Technology
- PhD/MS, University of Michigan (Ann Arbor) ME0bius
- Former trial lawyer
- Teach MBA Management Decision Making and PhD Bayesian Stats

Course structure

- Two overarching features: (a) mixed backgrounds, (b) busy schedule
- Structure: follow a clear path + bonus adventures for the curious

Ex: I will post all my workflow (LaTeX, Python, Mathematica notebooks)

- Focus on exercises/learning by doing!
- 5 classes, focus on applications to management and finance
- Readings before each lecture
- Exercises after each lecture (due the following lecture)

Will not be graded, but I will post solutions

- Study period in the afternoon, I will be around (Office 0.09)
- If anything is unclear, come talk to me!
- Website: borisbabic.com/teaching/inseadqm/home

Content

Functions
LinearBasics Inverse
Two equationsQuadratic
Exponents
Exponents Application: interest rates
Exponential functions
Logarithmic functions
Logarithmic functions
Logarithms Logarithmic and exponential equations
Case: pricing
Derivatives
Derivatives
Optimal decisionsCase: productionStatistics
Uncertainty Probability \& statistics
Normal distribution

Today

```
Functions
Linear
Basics Inverse
Two equations
Quadratic
Exponents
Exponents Application: interest rates
Exponential functions
Logarithmic functions
Logarithms Logarithmic and exponential equations
Case: pricing
Derivatives
Derivatives
Optimal decisions
Case: production
Statistics
Uncertainty Probability \& statistics Normal distribution
```


Constant

- Definition: placeholder for a given or fixed value
- Notation: a, b, c
- Examples:
- Maximum number of units that can be produced on a production line
- Height of the Eiffel tower

Variable

- Definition: Placeholder for an unknown value
- Notation: x, y, z
- Examples:
- Number of units produced each day on a production line
- Height of a student in this class

Continuous

- Can take values within a range
- Examples: height, weight, etc.

Discrete

- Can take only certain values (typically whole numbers)
- Examples: number of children, number of defective products, number of weeks worked
- A function is a type of map:

$$
x \text { (Input) } \longrightarrow f \text { (Function) } \longrightarrow y=f(x) \text { (Output) }
$$

- Here we say f maps x to y. For example, the following function maps shapes to their associated colors.

- Does it matter that no blue shape? That two red shapes?
- x is the independent variable, y is the dependent variable.
- f is the operation done on x to get y - the function, usually denoted f, g, h.
- Eg: Let $f(x)=x+2$. Then if $x=3, y=f(x)=5$.
- Eg: Amount of interest earned (I) depends on the length of time money is invested (t), given both money invested (p) and interest rate (r) :
$I=t \times p \times r$
$I=10000 \times 0.04 t=400 t$. If $t=5$ then $I=\$ 2,000$
$y=f(t)$
- Eg: Revenue of a firm (R) is a function of quantity of product sold (q), given the price (p)
$R=$ price \times quantity $\rightarrow R=p \times q \rightarrow R=5 q$
$R=g(q)$ (why does p not appear in the expression?)

Graphs

A convenient way to visualize functions:

Gives a visual representation of the relationship between two quantities

Some examples of graphs

 Google searches for "Manchester United" in Singapore as a function of time (previous 90 days)

Some examples of graphs

World Population Growth Through History

Linear functions

Functions of a special form:

CRITERIA EXAMPLE
$a>0$
$y=2 x-1$

CONSTANT

$$
a=0
$$

$$
y=2
$$

DECREASING $\quad a<0 \quad y=-x+2$

GRAPH

Linear functions

How to plot a linear function $y=a x+b$?
First, find two points:
.... easiest: those crossing axis
crossing y-axis: $(0, b)$
crossing x-axis: $\left(-\frac{b}{a}, 0\right)$

Second, draw line between and beyond

Example

Boris

Babic,
INSEAD

- Ex: Let $f(x)=2 x+4$. Plot this graph.
- $(0, b)=(0,4)$
- $(-b / a, 0)=(-4 / 2,0)=(-2,0)$

A grocery store owner starts her business with debts $\$ 100,000$. After operating for five years, she has accumulated a net profit of $\$ 40,000$. Write a linear rule for profit as a function of time. That is, write it in the form

$$
y=a x+b
$$

where y is profit and x is time.

$$
y=-100000+28000 x
$$

Linear functions are...

- Easy to estimate
- Easy to analyze
- Easy to interpret (and surprisingly general!)

Finding the intersection of two lines

- Example: Nuclear vs. fuel power plants
- Suppose cost C is a linear function of quantity Q, where N stands for Nuclear and F stands for Fuel.
$C_{N}=1000+Q_{N}$
$C_{F}=100+3 Q_{F}$
- Plot the two lines
- At what point do the two plants have the same cost?

Finding the intersection of two lines

Babic,
INSEAD

An inverse function is a different type of map:

$$
x=f^{-1}(y)(\text { Input }) \longleftarrow f^{-1}(\text { Inverse function }) \longleftarrow y \text { (Output) }
$$

- Note that $f^{-1}(f(x))=x$
- Ex: if $f(x)=x^{2}$, what is $f^{-1}(x)$?
- Ex: If $g(x)=x^{3}+3$, what is $g^{-1}(x)$?
- Ex: if $h(x)=7 x^{2}+4$ what is $h^{-1}(x)$?
\rightarrow Answers:
- $f^{-1}(x)=\sqrt{x}$
- $g^{-1}(x)=\sqrt[3]{x-3}$
- $h^{-1}(x)=\sqrt{\frac{x-4}{7}}$
(1) Replace $f(x)$ with a y
(2) Swap x and y
(3) Solve for y
(4) Replace y with f^{-1}

Example from above:

$$
\begin{array}{r}
g(x)=x^{3}+3 \\
\leftrightarrow y=x^{3}+3 \\
\leftrightarrow x=y^{3}+3 \\
\leftrightarrow y=\sqrt[3]{x-3} \\
\leftrightarrow g^{-1}(x)=\sqrt[3]{x-3}
\end{array}
$$

(original function)
(step 1)
(step 2)
(step 3)
(step 4)

Graphical relationship

Boris

Babic,
INSEAD

$$
\sqrt{x^{2}}=x
$$

$\sqrt[3]{x^{3}+3-3}=x$

$-x^{3}+3$
$-\sqrt[3]{x-3}$

DEMAND FUNCTION

$$
Q=60-5 P
$$

INVERSE DEMAND FUNCTION

$$
5 P=60-Q
$$

$$
\Rightarrow P=12-\frac{Q}{5}
$$

$$
{ }_{60} P
$$

Systems of equations

Method	By substitution Find x in the first equation, plug it into the second equation	By elimination Eliminate one unknown by adding up the two equations
$3 x-2 y=16$ $x+y=2$	$x+y=7$ $x-y=1$	

- By substitution (left panel example):

$$
\begin{aligned}
x=2-y & \rightarrow 3(2-y)-2 y=16 \\
& \rightarrow 6-3 y-2 y=16 \\
& \rightarrow 6-5 y=16 \\
& \rightarrow 5 y=-10 \\
& \rightarrow y=-2 \rightarrow x=4
\end{aligned}
$$

- By elimination (right panel example): $2 x=8 \rightarrow x=4 \rightarrow y=3$

Examples

- Ex 1:

$$
3 x-y=7
$$

$$
2 x+3 y=1
$$

- Ex 2 :

$$
\begin{aligned}
& 5 x+4 y=1 \\
& 3 x-6 y=2
\end{aligned}
$$

- Solution 1: $x=2, y=-1$
- Solution 2: $x=1 / 3, y=-1 / 6$

Quadratic functions

Another special type of function (a type of polynomial), of the form

$$
a x^{2}+b x+c
$$

- When $a=0$ we recover a linear function.
- When $a \neq 0$, this is a nonlinear function. Its graph is a continuous curve called a parabola.

Quadratic equations

- Solving quadratic function equal to 0 .
- Goal: x such that $a x^{2}+b x+c=0$.

- Corresponds to the intersection(s) of the curve with $f(x)=0$ line.
- Will there aways be solutions to this problem?
- Depends on the value of $b^{2}-4 a c$.

Quadratic equations

Boris

Babic,
INSEAD

- In general, when $a x^{2}+b x+c=0$, the roots are:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- If $b^{2}-4 a c>0$ then 2 roots
- If $b^{2}-4 a c=0$ then 1 root
- If $b^{2}-4 a c<0$ then no roots

Exercises

- Ex 1: Solve $x^{2}-x-2=0$
- Ex 2: Solve $4 x^{2}-12 x+9=0$
- Ex 3: Solve $x^{2}-2 x+3=0$
- Solution 1: $x=-1, x=2$
- Solution 2: $x=3 / 2$
- Solution 3: No real solution

Graphed solutions

Babic, INSEAD

Linear

Inverse

Two

Equations
Quadratic

Application to market equilibrium

Suppose that supply, S, and demand, D, for a product are functions of the product price, p :
$S=p^{2}+10 p+10$
$D=110-10 p$
At what price will supply equal demand?

$$
\begin{aligned}
& p^{2}+10 p+10=110-10 p \\
\leftrightarrow & p^{2}+20 p-100=0 \\
\rightarrow & p=\frac{-20 \pm \sqrt{20^{2}-4 \times 1 \times-100}}{2 \times 1} \\
& p \approx 4.24
\end{aligned}
$$

Profit-break even analysis

The demand function for a good is given as $Q=65-5 p$, where Q is quantity and p is price. Fixed costs are $\$ 30$ and each unit produced costs an additional $\$ 2$.

Write down the equations for total revenue and total costs as function of Q.
Find the break-even point(s).

Application to market equilibrium

- Paul's Notes (for excellent notes): http://tutorial.math.lamar.edu/Extras/AlgebraTrigReview/AlgebraTrigIntro.aspx
- Khan Academy Algebra (for additional lectures): https://www.khanacademy.org/math/algebra
- WolframAlpha (for computing answers): https://www.wolframalpha.com/
- Math Stack Exchange (for questions): https://math.stackexchange.com/

Today

Functions
Linear
Inverse
Two equations
Quadratic

Exponents
Application: interest rates
Exponential functions
Logarithmic functions

Logarithms Logarithmic and exponential equations
Case: pricing
Derivatives
Optimal decisions
Case: production
Statistics
Uncertainty Probability \& statistics Normal distribution

The Business School for the World ${ }^{\circledR}$
Europe | Asia Middle East

