Solution for the case "Motorcycle Helmets with Bluetooth: Pricing Bluetooth Chips"

Table 1. Price - Demand			Table 2. Price - Supply	
Price p	Demand D	ln(D), ln(S)	Price p	Supply S
91.00	1,000	6.9	9.00	1,000
74.63	2,000	7.6	23.21	2,000
65.06	3,000	8	31.53	3,000
58.27	4,000	8.3	37.42	4,000
53.00	5,000	8.52	42.00	5,000

a) Plot the graphs for *D* as a function of *p* and *S* as a function of *p*.

b) Plot the graphs for ln(*D*) as a function of **p** and ln(*S*) as a function of **p** ("ln" stays for "natural logarithm".)

Hint: for questions c-e you will need to estimate the relationship D(p) and S(p) as $\ln(D)=a+bp$, $\ln(S)=c+dp$.

c) Estimate the supply and the demand at a price level of \$50.

ln(D) = 10.76 - 0.0424p ln(S) = 6.46 + 0.0488pSupply for p=50 S=7332 Demand for p=50 D=5653

d) Does a price level of \$50 represent a stable condition, or is the price likely to increase or decrease?

At p=50, Demand is smaller than Supply => price is likely to decrease.

e) Find the equilibrium point. Write the equilibrium price to the nearest cent and the equilibrium quantity to the nearest unit.

Equilibrium point for D = SSolve ln(D) = ln(S), or 6.46+0.0488p = 10.76 - 0.0424pp = 47.15Equilibrium quantity = 6380.