Solution Set 5

Normal distribution

1. No transformation required. We can use this statistic
a) $\operatorname{Prob}(Z>1.645)=0.05$
b) $\operatorname{Prob}(Z<-1.645)=0.05$
c) $\operatorname{Prob}(-A<Z<A)=0.95$

$\operatorname{Prob}(Z>A)=0.025=F(Z)$
$\operatorname{Prob}(Z<-A)=-0.025$
The corresponding Z value is ± 1.96
2. Let $x=$ age of a student
a) $\operatorname{Prob}(x<27)=$?
$\mathrm{Z}=\frac{x-\mu}{\sigma}=\frac{27-28.7}{2.4}=-0.71$
$\operatorname{Prob}(x<27)=\operatorname{Prob}(Z<-0.71)=1-0.7611=0.2389$
b) $\operatorname{Prob}(x>31)=$?

$$
\mathrm{Z}=\frac{x-\mu}{\sigma}=\frac{31-28.7}{2.4}=0.96
$$

$$
\operatorname{Prob}(x>31)=\operatorname{Prob}(Z>0.96)=0.1685
$$

3. a) Let $x=$ weight of a baby

$$
\begin{aligned}
\operatorname{Prob}(x>4) & =\operatorname{Prob}\left(Z>\frac{x-\mu}{\sigma}\right) \\
& =\operatorname{Prob}\left(Z>\frac{4-3.25}{0.35}\right) \\
\operatorname{Prob}(x>4) & =\operatorname{Prob}(Z>2.14)=0.0162 \\
& =1.62 \%
\end{aligned}
$$

b) $\operatorname{Prob}(2.5<x<3.5)$

$$
\begin{aligned}
& Z_{1}=\frac{2.5-3.25}{0.35}=-2.14 \\
& Z_{2}=\frac{3.5-3.25}{0.35}=0.71
\end{aligned}
$$

$\operatorname{Prob}(2.5<x<3.5)=\operatorname{Prob}(-2.14<Z<0.71)$

$$
\begin{aligned}
& =F\left(Z_{1}\right)-F\left(Z_{2}\right)=0.9838-0.2389 \\
& =0.7449=74.5 \%
\end{aligned}
$$

c) $\operatorname{Prob}(x<$ value $)=0.22$

$$
\operatorname{Prob}(x \geq \text { value })=0.78=F(Z)
$$

$$
\begin{aligned}
& Z=-0.77=\frac{x-\mu}{\sigma} \\
& x=\mu+Z * \sigma \\
& =3.25-0.77 * 0.35 \\
& x=2.98
\end{aligned}
$$

4. Let $x=$ monthly percentage changes in D-J
a) $\operatorname{Prob}(x>0)$

$$
\mathrm{Z}=\frac{x-\mu}{\sigma}=\frac{0-0.65}{3.5}=-0.186
$$

$$
\operatorname{Prob}(x>0)=\operatorname{Prob}(Z>-0.186)=.57=57 \%
$$

b) $\operatorname{Prob}(x>5)$

$$
Z=\frac{x-\mu}{\sigma}=\frac{5-.065}{3.5}=1.24
$$

$$
\operatorname{Prob}(x>5)=\operatorname{Prob}(Z>1.24)=.107=10.7 \%
$$

c) $\operatorname{Prob}(x>$ value $)=0.05$

$$
\begin{aligned}
& Z=1.64 \\
& 1.64=\frac{x-.65}{3.5} \\
& x=1.64 * 3.5+.65=6.39 \\
& x=6.39 \%
\end{aligned}
$$

5. a) $\operatorname{Prob}(x>1272)$

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma}=\frac{1272-1200}{36}=2 \\
& =\operatorname{Prob}(\mathrm{z}>2)=.0228=2.28 \%
\end{aligned}
$$

b) $\operatorname{Prob}(x<1146)$

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma}=\frac{1146-1200}{36}=-1.5 \\
& =\operatorname{Prob}(Z<1.5)=1-.9332=.0668=6.68 \%
\end{aligned}
$$

c) $\operatorname{Prob}(\mathrm{x}>$ value $)=0.1$

$$
\Rightarrow z=1.28=\frac{x-1200}{36}
$$

$$
x=1200+36 \times 1.28=1246
$$

d) $\operatorname{Prob}(x<$ value $)=.2 \Leftrightarrow \operatorname{Prob}(x>$ value $)=.8$

$$
\begin{aligned}
& \Rightarrow z=-.84=\frac{x-1200}{36} \\
& x=1200-.84 * 36 \\
& x=1170
\end{aligned}
$$

6. $x=$ travel time, follows a normal distribution with $\mu=60, \sigma=6$

$$
\begin{aligned}
& \operatorname{Prob}(x>70) ? \\
& Z=\frac{70-60}{6}=1.67
\end{aligned}
$$

$$
\operatorname{Prob}(Z>1.67)=0.0475
$$

Expected loss of revenue per passenger

$$
400 € * 0.0475=19 € \text { per passenger }
$$

7. Q follows a normal distribution with $\mu=250 \quad \sigma=$?

$$
\operatorname{Prob}(\mathrm{Q}>275)=\operatorname{Prob}\left(Z>\frac{275-250}{\sigma}\right)=.15
$$

From the table, $Z=1.04$

$$
\begin{aligned}
& Z=\frac{275-250}{\sigma}=1.04 \Rightarrow \sigma=24.04 \\
& \text { variance } \Rightarrow \sigma^{2}=577.92
\end{aligned}
$$

8. $x=$ consumption of laundry detergent, follows a normal distribution 99% of households use between 1 and 10 liters of detergent per week
Mean $=\frac{10-1}{2}=5.5$
$\operatorname{Prob}(1<x<10)=0.99$
$\operatorname{Prob}(x>10)=0.005$
$F(Z)=0.005 \Rightarrow Z=2.58$
$Z=\frac{x-\mu}{\sigma}=\frac{10-5.5}{\sigma}=2.58$
$\sigma=\frac{4.5}{2.58}=1.74$
9. $x=$ time to go to school, follows a normal distribution with $\mu=20, \sigma=5$

Percentage of time she will be late $=\operatorname{Prob}(x>30)$
$Z=\frac{x-\mu}{\sigma}=\frac{30-20}{5}=2$
$\operatorname{Prob}(Z>2)=0.0228$
If she leaves her home 30 minutes the start of class, she will be late 2.3% of the time.

If she doesn't want to be late more than $\mathbf{1 \%}$ of the time (for example)

Prob $(x>$ Time $)=0.01$
$F(Z)=0.01 \Rightarrow Z=2.33$
$Z=\frac{x-\mu}{\sigma}=\frac{x-20}{5}=2.33$
$x=20+5 * 2.33=31.65$
If she doesn't want to be late more than 1% of the time, she should leave home approximately 32 minutes before the start of class
10. $x=$ height of men, follows a normal distribution with $\mu=70, \sigma=3$

Only 5\% of men should be taller than $x=H$
$\operatorname{Prob}(x>H)=0.05$
$F(Z)=0.05 \Rightarrow Z=1.645$
$Z=\frac{x-\mu}{\sigma}=\frac{H-70}{3}=1.645$
$H=70+3 * 1.645=74.94$
We expect that 95% of the men will be shorter than 74.94 inches.
To have a 1 -foot clearance, the doors should be:

$$
74.94+12=86.94 \text { inches high }
$$

11. $x=$ number of ounces injected, follows a normal distribution with $\mu=12, \sigma=0.04$
$\operatorname{Prob}(x<11.9)$
$Z=\frac{x-\mu}{\sigma}=\frac{11.9-12}{0.04}=-2.5$
$\operatorname{Prob}(Z<-2.5)=1-F(Z)=1-0.9938$

$$
=0.0062
$$

12. a) $\mathrm{x}=$ errors in the forecast, follows a normal distribution with $\mu=0, \sigma=10$

Forecasts inaccurate by more than 15% mean

$$
x>15 \quad \text { or } \quad x<-15
$$

$\operatorname{Prob}(x>15)+\operatorname{Prob}(x<-15)$
As $\mu=0$, these two probabilities are the same

$$
Z=\frac{x-\mu}{\sigma}=\frac{15-0}{10}=1.5
$$

$\operatorname{Prob}(Z>1.5)=0.0668$

$$
\begin{aligned}
\operatorname{Prob}(x>15)+\operatorname{Prob}(x<-15) & =2 * 0.0668 \\
& =0.1336
\end{aligned}
$$

b) $\operatorname{Prob}(-c<x<+c)=0.05$

$$
\begin{aligned}
& \operatorname{Prob}(x>+c)=\frac{1-0.05}{2}=0.475 \\
& F(Z)=0.475 \Rightarrow Z=0.06 \\
& Z=\frac{x-\mu}{\sigma}=\frac{c-0}{10}=0.06 \\
& c=0.06 * 10=0.6
\end{aligned}
$$

To earn the bonus, the analyst must give a forecast within 0.6% of the true value.

