Statistics

Data Description (frequency distribution, mean, median, mode, variance, standard deviation)

- 1. a) Mode $_{F} = 1$, Mode $_{A} = 2$
 - b) Because the number of data is even, the median will be the average value of the 97th and 98th observations for Fontainebleau, which are 2 and 2, so Median $_{E} = 2$.

For Avon, the median is given by the average value of the 85^{th} and 86^{th} observations which are 3 and 3, so Median $_{A} = 3$.

2. a) The complete data can be found in Table 1.

Miles per gallon	Number of Vans	Relative Frequency	Cumulative Frequency
6.0 – under 8.0	6	0.06	6
8.0 - under 10.0	23	0.23	29
10.0 – under 12.0	34	0.34	63
12.0 – under 14.0	17	0.17	80
14.0 – under 16.0	12	0.12	92
16.0 – under 18.0	8	0.08	100
Totals	100	100	

Table 1: Fuel consumption data

b) The histogram is shown below:

Relative frequency of fuel consumption for Sky King delivery fleet

3. Construct an absolute and relative frequency distribution using the data of Table 3.

Life Expectancy	Abs. Freq.	Rel. Freq.
41	2	0.08
42	0	0
43	7	0.28
44	6	0.24
45	0	0
46	0	0
47	10	0.4
-	25	1.0

Probability

1. a) Let *X* be the number that occurs on the top of the dice.

We need to find *P*(*X*>4). Observe that *P*(*X*>4)=*P*(*X*=5)+*P*(*X*=6) = 1/6+1/6=2/6=1/3. **Answer:** 1/3.

b) Expected value is given by

$$E[X] = \sum_{i} x_{i} p(x_{i}) = \frac{1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \frac{3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + \frac{5 \cdot \frac{1}{6} + \frac{6 \cdot \frac{1}{6}}{6}}{= \frac{(1 + 2 + 3 + 4 + 5 + 6)}{6} = 3.5}.$$

Answer: On average, we'll observe 3.5.

c) Variance is given by

$$\sigma^{2}_{X} = \operatorname{Var}(X) = \sum_{i} (x_{i} - E[X])^{2} p(x_{i})$$

= $(1 - 3.5)^{2} * 1/6 + (2 - 3.5)^{2} * 1/6 + (3 - 3.5)^{2} * 1/6 + (4 - 3.5)^{2} * 1/6 + (5 - 3.5)^{2} * 1/6 + (6 - 3.5)^{2} * 1/6$
= $(2.5^{2} + 1.5^{2} + 0.5^{2} + 0.5^{2} + 1.5^{2} + 2.5^{2})/6 = 2.92.$

Answer: 2.92.

d) Standard deviation is given by $\sigma_X = \sqrt{Var(X)} = \sqrt{2.92} = 1.71$.