
Submitted Manuscript: Confidential

NOVEMBER 2, 2019. PLEASE CITE THE PUBLISHED VERSION

Algorithms on Regulatory Lockdown in Medicine

Authors: Boris Babic1, Sara Gerke2, Theodoros Evgeniou3, I. Glenn Cohen4*†

Affiliations:

1Boris Babic, INSEAD, France and Singapore; California Institute of Technology (Caltech),

Pasadena, California 91125, USA.

2Sara Gerke, The Petrie-Flom Center for Health Law Policy, Biotechnology, and Bioethics at

Harvard Law School; The Project on Precision Medicine, Artificial Intelligence, and the Law

(PMAIL), Cambridge, MA 02138, USA.

3Theodoros Evgeniou, INSEAD, France and Singapore.

4I. Glenn Cohen, Harvard Law School, Cambridge, MA 02138, USA.

†All authors contributed equally to the analysis and drafting of the paper.

*Correspondence to: igcohen@law.harvard.edu.

1

mailto:igcohen@law.harvard.edu


Submitted Manuscript: Confidential

Abstract: Regulators of medical Artificial Intelligence and Machine Learning (AI/ML) are faced

with a difficult problem: Should they limit marketing to a version of the system that was

submitted for initial premarket review (a “locked” regime), or permit marketing of an algorithm

that can adapt to changing conditions (an “adaptive” regime)? In April 2019 FDA issued a draft

framework to address this problem that may become a model worldwide. In this paper, we argue

that the locked/adaptive distinction and FDA’s proposed approach to it miss the central risks of

medical AI/ML. Such risks emerge from structural features of predictive analytics, like concept

drift, covariate shift, and AI/ML model instability. Paying attention to these risks suggests a

continuous and cooperative monitoring framework of how the systems work in different and

likely evolving environments, which we outline by way of conclusion.

One Sentence Summary: Regulators should adopt an ongoing risk management process for

medical machine learning updates rather than focus on the locked/adaptive distinction.
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Medical Artificial Intelligence and Machine Learning (AI/ML) is a fast-growing area with many

technologies already hitting the market: from mobile apps that help visually impaired to better

interact with their environment (1) or detect skin cancer (2), to an AI/ML tool that analyzes chest

X-rays to identify suspected findings suggestive of pneumothorax (3), to clinical use of IDx-DR,

the first AI/ML diagnostic that provides a screening decision for the eye disease diabetic

retinopathy (4). Medical AI/ML is big business, with a recent forecast suggesting that the market

for these technologies will surpass $34 billion worldwide by 2025 (5). As regulators like the

United States (U.S.) Food and Drug Administration (FDA), the national competent authorities of

the European Member States, and the European Medicines Agency struggle with how to regulate

medical AI/ML, they face a very fundamental problem: after reviewing a submission, should the

regulator limit its marketing authorization to a version of the algorithm (and underlying training

data) that was submitted (what FDA calls a “locked” algorithm, a terminology we employ in this

paper while recognizing it may not be ideal) or permit marketing of an algorithm that can learn

and adapt to new conditions (what FDA calls an “adaptive” algorithm)? We refer to this as the

AI/ML Update Problem. For drugs and ordinary medical devices, this problem typically does not

arise. But AI/ML is unique in this regard, as it is the first such technology with the capability to

continuously evolve.

In this Policy Forum, we address the Update Problem by analyzing and critiquing the approach

suggested by FDA in its April 2019 proposed framework (6). While crediting the value of FDA’s

approach, we also explain why the problem is more nuanced and difficult than FDA’s proposal

suggests and show how a framework sensitive to risks that are unique to and ubiquitous in

modern ML may prove superior. Our message, in short, is that regulators should focus on
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whether the AI/ML system as a whole is appropriately stable, with emphasis in particular on

treating similar patients similarly.

The Regulatory Design Problem

One of the key advantages of AI/ML is that it can enable a “learning healthcare system,” wherein

the boundaries between research and practice are regarded as porous (7). Once the AI/ML is

deployed, it can (to anthropomorphize slightly) learn and thereby alter its performance/behavior,

much the way a medical resident learns on the job. But this poses a difficult regulatory design

challenge; to see it, it is useful to begin with two polar approaches to the Update Problem.

The first pole would be for a regulator to permit marketing of only a “locked” algorithm and

require any change to the algorithm to undergo a completely new premarket review. Such an

approach has several drawbacks. Suppose an algorithm for analyzing the results of

mammograms and making recommendations as to breast cancer risk receives marketing

authorization (8). Suppose the training data was under-inclusive of African-American women

who tend to have differences in breast density from Caucasian women. The algorithm would thus

produce recommendations ill-suited for that population. As the AI/ML system is used in clinical

settings that include more African-American women, it becomes possible to more accurately

estimate the parameters used to predict breast cancer in this sub-population when making

recommendations. Moreover, in some situations, AI/ML identifies sub-populations that were not

known ex-ante. For example, in conducting HIV vaccine studies, researchers did not know (and

perhaps could not know) ex-ante that in a particular vaccine trial the vaccine might increase

rather than reduce HIV infection risk for “uncircumcised men who both had sex with men
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(MSM) and had high levels of pre-existing Ad5 antibodies” (9). Indeed, with usage, the AI/ML

can even develop customized models for different sub-populations (some of which are only

possible to identify after using it on lots of patients) as it accumulates data about them -- AI/ML

is exciting in part because it sometimes draws relationships that would not be anticipated by

human beings. Such customization would be health-promoting, but if another premarket review

is needed, the update may never occur -- the maker may not have a financial incentive to pursue

the cost of another review and might also worry about what message pursuing it might send

about the quality of its existing algorithm.

The opposite pole would be to treat the initial marketing authorization as permitting the AI/ML

maker to update the algorithm without any further regulatory review. Such updates can be either

of the algorithm itself (‘algorithm updates’) -- for example, replacing a linear ML model with a

polynomial one -- or of the algorithm's parameters (‘parametric updates’) which may be

continuously tuned as the system is applied to new data in practice. This approach is likewise

perilous. Parametric updates are at the core of modern AI/ML systems -- they take place almost

continuously, without human input, and their effects can be hard to identify ex-ante. But the

quality of parametric updates depends largely on the quality of the associated underlying data.

An adaptive system with continuously changing parameters is susceptible to data quality issues

that can arise from, for example, errors of the AI/ML users or adversarial attacks on machine

learning -- as described by Finlayson et al. in a recent Science Policy Forum (10). The latter can

take many forms. Consider a hypothetical example, as in (10): in response to the opioid crisis,

many insurance companies now use patient or provider level overdose risk prediction algorithms

to deny oxycontin prescription filings. A physician, certain that she has a patient in need of a
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prescription, may learn that she can avoid the algorithmic gatekeeper and secure a prescription

by typing in a combination of codes which will guarantee a low-risk for overdose score. Such a

system incentivizes the elicitation of low-quality physician data. An unchecked dynamic

algorithm would inappropriately adapt to this and begin to falsely categorize low-risk patients as

high risk. The algorithm’s evolution in this context is analogous to the way that Tay, Microsoft’s

AI chatbot, learned to post inflammatory and racist tweets in response to adversarial attacks from

Twitter users feeding it ‘low-quality data’ in the form of incendiary speech (11). In this kind of

situation, ongoing oversight of the sort we will encourage can provide a necessary check on

adaptive AI/ML systems.

FDA’s Proposed Framework

In an attempt to steer between the Scylla and Charybdis of these two polls, FDA released a

discussion paper in April 2019 (6). Until now, FDA has only approved or cleared medical AI/ML

devices with “locked” algorithms (6). A “locked” algorithm is defined by FDA as “an algorithm

that provides the same result each time the same input is applied to it and does not change with

use.” (6). Any AI/ML system can satisfy this definition provided it is fixed in advance.

However, most AI/ML algorithms are “adaptive”, arguably their key strength. For example, even

parameters in a simple model like a logistic regression will gradually evolve as we refit the

model in response to new data. For adaptive AI/ML-based software as a medical device – what

FDA calls “SaMD”, which is software that is on its own a medical device and is not part of a

hardware medical device (12) – FDA proposed in its discussion paper a “total product lifecycle

(TPLC) regulatory approach” that permits the continuous improvement of such devices while
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maintaining their safety and effectiveness (6). The idea is that AI/ML systems could be updated

to a certain extent after marketing authorization; when seeking initial premarket review of an

AI/ML-based SaMD, manufacturers would be given the option to submit a “predetermined

change control plan”, which would contain a description of anticipated modifications and an

“Algorithm Change Protocol”, including the associated methodology being utilized to implement

such changes (6).

Understanding the Risks of Medical AI/ML

In its discussion paper of April 2019, FDA adds to its existing SAMD approach the idea of a

spectrum between locked and adaptive algorithms. We argue that this distinction can be

misleading, and even dangerous, by cultivating a false sense of control: an algorithm which the

FDA defines as “locked” could be more harmful than an “adaptive” one – and vice versa.

Instead, for approving AI/ML-based devices and their subsequent updates, the FDA should focus

on whether the AI/ML system as a whole is overall reliable. We will describe below several

types of AI/ML risks that can undermine the system’s reliability.

To begin, the concept of “locked” is not well defined in FDA’s approach. Consider, by analogy, a

targeting system following an aircraft. To “lock”, in this context, may be defined for the system

to focus on a fixed point in space, rather than on its moving target. Doing so, when the system

fires at times 1 and 2 based on the image of the fixed point (identical inputs), it will strike the

exact same location (identical outputs). However, the target airplane itself has moved. Further, its

location may be still uncertain due to imperfections of the radar itself. Under these conditions,

locking (to geographic coordinates) is not helpful – indeed, it is counter-productive. Such a
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system would not be effective. What the targeting system must do, instead, is to track the moving

target. Extending the analogy to medicine, what we want is for the AI/ML system to lock, as

closely as possible, to the true function that relates the inputs and outputs – which is unknown in

practice – rather than continuing to use the estimate of that function that was first approved (see

Box 1). Locked systems might, quite literally, miss the mark. We identify below several types of

risks that, when properly controlled, can help the AI/ML system lock on to the true function as

closely as possible. These risks include (1) concept drift, (2) covariate shift, and (3) model

instability. This is where we believe the FDA should focus its attention.
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Concept Drift

In AI/ML, concept drift describes a situation where the relation between inputs and outputs

changes over time. This may happen due to a changing environment or because the model was

mis-specified (e.g., the estimated function is linear when the actual relationship is quadratic).

Consider, for example, an AI/ML system trained to identify skin lesions as benign or malignant,

as in Esteva et al. (14). The model presupposes an underlying distribution of these labels (benign

vs. malignant). However, the datasets these AI/ML systems rely on, such as the ISIC

dermoscopic archive (https://isic-archive.com/), typically do not track race or skin color, even if

tests were done with all skin colors. Yet the malignancy of skin lesions may vary across race and

skin type. As a result, the same image can lead to two different probabilistic diagnoses,

depending on the underlying skin/race, an omitted feature. This problem is ubiquitous in medical

AI/ML. Locking the algorithm does not protect against such harms, much like locking the

coordinates in the aircraft example above does little to ensure that the target is hit. Indeed, a

locked algorithm can make matters worse by prohibiting the system from learning from

experience.

Meanwhile, while FDA’s discussion paper on adaptive AI/ML-based SaMD is a welcome

development, its proposed predetermined change control plan is either uninformative or

impractical – depending on the level of detail at which a maker would be expected to describe

future modifications. At one extreme, we might require a maker to describe proposed changes in

very general (and hence impractical) terms. This would be uninformative. On the other extreme,

we might require them to describe precisely the sorts of changes they anticipate. Even if such a
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task can be accomplished, such a plan could be harmful when we learn about unanticipated

problems – in which case, the proposed framework could require another round of review. Thus,

such an approach would be impractical.

Covariate Shift

When the input distribution (distribution of new data) is different from the data the algorithm

was trained or tested for approval on, we have covariate shift (15). This can occur in the absence

of concept drift. For example, it may be that our training data came from geographically

centralized clinical sites. When this occurs, locking the algorithm hampers the maker’s ability to

address the problem. Further, describing how the marginal distribution may change is not

something a maker may be able to do ex-ante since they usually do not know the distribution of

the data that the algorithm will be applied to.

Instability

As discussed above, one major concern is treating similar patients similarly. Suppose that when

an AI/ML system is given a set of inputs, it produces one probabilistic output. For example, the

probability that a particular skin lesion is malignant is 87%. Now suppose that we make very

small changes to the set of inputs provided to the underlying algorithm. For example, if the input

space is a high dimensional pixel space, where the algorithm is given an image of the lesion, we

may change the values associated with a few pixels in a way that is medically insignificant. The

AI/ML system must now make a prediction from a feature vector that is vanishingly different

from x: x + δx. For most reasonable metrics d, the distance between x and x + δx is close to 0.
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A stable algorithm should give predictions that are similarly “close” in the output space (in

probability) when it is given x + δx instead of x alone. In other words, if d(x, x + δx) ≅ 0 then

D(Mx, Mx + δx) ≅ 0. More generally, we would require that D(Mx, Mx + δx) ≤ d(x, x + δx)

(Dwork et al. (13) use this property as the basis for a definition of fairness in ML, see Box 1).

When this inequality is not satisfied, the algorithm is not stable in the sense that similar patients

can receive dissimilar diagnoses. From the perspective of patient safety, we would not want a

diagnostic system that frequently classifies medically similar lesions very differently. Paying

attention to the Lipschitz Property (see Box 1) encourages us to think not in terms of same

inputs/same outputs, but in terms of similar inputs/similar outputs. Encouraging this shift is

among our central insights. As Ralph Waldo Emerson put it, foolish consistency is the hobgoblin

of little minds.

In modern AI/ML, leading classifiers are highly nonlinear. This makes them especially

vulnerable to such instability, as demonstrated, for example, in Goodfellow et al. (16), where δx

is taken to be an imperceptibly small vector. In (10), Finlayson et al. focus on how such

instabilities can lead to adversarial attacks in medical applications. Indeed, they demonstrate that

popular skin cancer classification algorithms are often unstable. But the problem extends beyond

adversarial attacks. Locking an algorithm does not secure against instability and FDA’s proposed

framework, while moving in the right direction, does not get to the core of the problem either,

because it is impossible to know in advance what kind of instabilities the world actually has.

An Ongoing Monitoring Approach for Medical AI/ML Systems
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For the reasons indicated above, we argue that FDA’s current approach (locked/adaptive

distinction) is not well suited to the problem. We believe FDA should instead focus on the central

risks of AI/ML, as identified above. While this is in the spirit of FDA’s proposed TPLC approach

(as we explain below), the emphasis should be on developing a process to identify and manage

risks rather than on articulating a plan for updating ex-ante. Such a process can include, for

example, the following aspects:

● Retesting: An AI/ML system may need to be regularly retested on all past cases,

including the ones used for the initial FDA market authorization. Major discrepancies on

past verdicts may lead to regulatory action.

● Simulated checks: An AI/ML system should be continuously applied to ‘simulated

patients’ in order to evaluate whether its behavior is reliable with respect to a sufficient

diversity of patient types.

● Adversarial stress tests: Every AI/ML system may need to be paired with an adversarial

monitoring mechanism (17). A stable AI/ML system should be robust to the kinds of

adversarial modifications described in Finlayson et al. (10). The FDA should therefore

use the adversarial approach to conduct algorithmic stress tests throughout the AI/ML

system’s lifecycle.

● An appropriate division of labor: Monitoring of AI/ML systems should, in general, be

done by actors different from the ones developing these systems. Separation of

development and testing is common in other contexts: for example, in software

development, quality assurance and development teams are separate, while risk

management and compliance departments are separated from traders in the financial

sector. Such divisions may be likewise required for companies developing medical
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AI/ML systems. Moreover, third-party organizations that monitor AI/ML systems based

on standards the industry develops, similar in spirit to those of professional organizations

like the IEEE and the ISO, may also play a role in the future.

● Use of electronic systems: Finally, regulators could use electronic systems to

continuously monitor AI/ML systems using testing procedures as outlined above. For

example, the FDA’s national medical product monitoring system Sentinel (18, 19), mainly

used for identifying risks from usage of drugs, vaccines, and other biologics, could be

enhanced to continuously monitor the behavior of approved AI/ML devices. Combining

information from Electronic Health Records (EHRs) and other data from such devices,

the FDA could itself perform some of the tasks described above in a manner patterned on

Sentinel.

The above suggestions potentially complement FDA’s proposed new TPLC approach, which we

commend and seek to build on. More generally, however, our goal is to move away from a

framework of identifying anticipated changes and emphasize the risks that can arise from

unanticipated changes in how medical AI/ML systems adapt to their environments. As described

above, subtle often unrecognized parametric updates can cause large and costly mistakes. The

focus for such updates should not be on identifying or documenting them, which may be

challenging if not impossible, but instead on managing risks that are specific to this environment

(concept drift, covariate shift, and model instability). Finally, while our discussion has focused

on FDA and the U.S. experience, with appropriate adaptations, the ongoing monitoring approach

we set out can be potentially used by other countries and their regulators as well.
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