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I propose a general alethic theory of epistemic risk according to which the riskiness of
an agent’s credence function encodes her relative sensitivity to different types of graded
error. After motivating and mathematically developing this approach, I show that the ep-
istemic risk function is a scaled reflection of expected inaccuracy (a quantity also known
as generalized information entropy). This duality between risk and information enables
us to explore the relationship between attitudes to epistemic risk, the choice of scoring
rules in epistemic utility theory, and the selection of priors in Bayesian epistemologymore
generally (including the Laplacean principle of indifference).

1. Introduction. My goal in this article is to develop and defend a general
theory of epistemic risk within the epistemic utility framework. In light of the
growing influence of decision-theoretic approaches to epistemology, it is nat-
ural to consider what role risk will play in the normative assessment of an
agent’s credence function. To date, there is very little literature on this topic.1
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I make some fairly basic assumptions about epistemic value. For illustra-
tive purposes, we will proceed under the fiction that an agent’s selection of a
credence function may be treated as an epistemic act such that the rational-
ity of that act can be evaluated using the tools of ordinary decision theory.
One epistemic act is preferable to another if it increases expected epistemic
utility, where epistemic utility is given in terms of a scoring rule. Scoring rules
measure the accuracy of an agent’s credence function. Thus, accuracy is our
primary epistemic commodity.

If we are to develop a theory of risk within the framework of epistemic
utility, the riskiness of a credence function should reflect an agent’s exposure
to potential losses in accuracy. The theory should be alethic, so to speak. We
will see that following this line of inquiry, the shape of an agent’s epistemic risk
function reflects her relative sensitivity to different types of graded error. In
simple cases, this implies that the shape of the risk function reflects an agent’s
attitude toward the relative cost of increasing inaccuracy in the direction of false
positive (type I) mistakes against the cost of increasing inaccuracy in the direc-
tion of false negative (type II) mistakes. On larger sample spaces, the risk func-
tion reflects an agent’s attitude to increasing inaccuracy in the direction of ev-
ery possible outcome. Meanwhile, the curvature of the risk function encodes
attitudes toward marginal changes in accuracy and local sensitivity to error.

To develop a measure of epistemic risk that captures the preceding idea,
I propose an approach inspired by Rothschild and Stiglitz’s (1970) measure
of economic risk in terms of stochastic dominance. Onmy approach, one cre-
dence function is riskier than another if it is a mean-preserving spread of it,
and the least risky credence function is the one that guarantees a particular ac-
curacy score regardless of the state of the world.Wewill see that for credence
functions,mean-preserving spreads in accuracy are equivalent to certain changes
in expectation and that a plausible measure of risk, therefore, is the difference
in expectation from the risk-free credences. In simple cases, this measure has
a very natural interpretation in terms of the difference between the agent’s
best and worst outcomes.

FollowingGrunwald andDawid (2004), I use the term ‘general entropy’ to
refer to the expected accuracy of a credence function evaluated with respect to
itself (we will see why below). As a result, the notion of epistemic risk I ad-
vocate is also a measure of entropic change. Indeed, the main formal contri-
bution of this article is a duality theorem connecting epistemic risk and general
entropy, which will be established in section 5: namely, that under very gen-
eral conditions risk is a scaled reflection of general entropy. That is,

risk 1 entropy 5 k:

This is a fruitful link between risk and information entropy. From every risk
function we may derive a unique scoring rule, and the agent’s attitude to dif-
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ferent types of error will determine the shape of her score. For example, if she
considers the different error costs to be equal, her score will evaluate equally
changes in accuracy in the direction of each outcome. If such an agent seeks
to minimize epistemic risk, she will identify a uniform prior by applying the
Laplacean principle of indifference (POI). However, the uniform prior mini-
mizes epistemic risk only if the different types of error are treated equally. This
is quite a substantial assumption, and a version of it appears in Pettigrew’s
(2016a) accuracy argument for the POI. More generally, the relationship be-
tween risk and general entropy suggests that there exists a family of indiffer-
ence principles (rather than a unique POI) each reflecting a different way of
evaluating the error costs of a prospective credence function. This highlights
the normative commitments that comewith endorsing an uninformative orflat
prior. The agent’s risk profile, therefore, is in an important sense epistemically
central. Oncewe knowwhat it is, we can determine the appropriatemeasure of
risk, the associated entropy, and the scoring rule.

The article proceeds as follows. Section 2 provides an overview of com-
peting approaches one might use to develop a theory of epistemic risk, focus-
ing in particular on the difference between alethic and modal conceptions of
risk. In section 3, I describe the relevant formal concepts. In section 4, I de-
velop the theory of epistemic risk for a simple case. In section 5, I articulate
the normative attitudes to the cost of error implied by the location, shape, and
curvature of an agent’s epistemic risk function. In section 6, I develop the du-
ality between risk and entropy. Section 7 extends the approach to more gen-
eral sample spaces. Finally, section 8 explores the relationship between epi-
stemic risk, the selection of priors, and the Laplacean POI.

2. Background. In financial analyses the expression ‘value at risk’ denotes
the quantity (in monetary terms) that a firm or financial portfolio, say, stands
to lose. As we seek to develop a theory of epistemic risk, we can begin by
asking a related question: When an agent adopts a credence function that the
theory deems risky, what is the value under risk? I can think of two approaches
wemight take to the epistemic value in jeopardy: the alethic approach, which
I will develop, where the value is accuracy, and the modal approach, devel-
oped recently in Pritchard (2017), where the value is knowledge. The alethic
approach is especially appropriate to Bayesian epistemology, since finely
grained beliefs can approach the truth to various degrees, whereas the modal
approach may be best suited for traditional full-belief approaches, in which
justification plays a central role.

The Alethic Approach. I start with the veritist premise that the primary
source of epistemic value associated with an agent’s beliefs or credences is
the extent to which they represent theworld correctly (Goldman 1999, 2002).
In the Bayesian context, veritism suggests that an agent should strive to adopt
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high credences in truths and low credences in falsehoods. These are some-
times referred as the Jamesian goals (e.g., Pettigrew 2016b; Horowitz 2018),
a reference to James (1896). But in identifying an appropriate credence func-
tion, we must strike a balance between these goals. To take an example from
Levinstein (2017), while an agent could avoid massive inaccuracy by having
credences close to 0.5, assuming an underlying accuracymeasure that is sym-
metric, she would thereby sacrifice the epistemically valuable state of being
highly accurate. Some agents may find this a valuable trade-off. If we sup-
pose that suspension of belief is similar to credences close to 0.5, then Thomas
Jefferson’s well-known sentiment regarding ignorance is a good example.
He writes, “ignorance is preferable to error, and he is less remote from the
truth who believes nothing than he who believes what is wrong” (Jefferson
1785/1832, 46). Others may not. James himself notes that “a certain lightness
of heart seems healthier than [such] excessive nervousness [about error]” (1896,
339).2 Van Fraassen (1984) adopts a similar perspective.

On the view I develop, thewaywe strike this balance, given an underlying
measure of accuracy, reflects our attitudes to epistemic risk. The epistemic risk
function encodes this trade-off between confidently believing the true and con-
fidently disbelieving the false. But the theory is more general than that. On
larger sample spaces, the epistemic risk function reflects the way we balance
approaching error in the direction of every possible outcome. In short: the nor-
mative value at risk is accuracy, and attitudes to risk of graded error are reflected
by the epistemic risk function I will develop. This is similar to the relationship
between risk and utility in ordinary decision theory, where the agent’s attitude
to ordinary risk is encoded in the curvature of her utility function.

The Modal Approach. Alternatively, we might think that what is at risk
in epistemology is not the risk of error (i.e., the potential of holding a false
belief or inaccurate credence) but rather the risk of holding a belief that, while
true or accurate, fails to constitute knowledge. This idea emerges out of anti-
luck approaches to epistemology, where safety is central to justification. For
Pritchard (2007), an agent’s belief is safe if it remains true inmost nearby pos-
sible worlds in which the agent holds the belief in the same way as in the ac-
tual world. As a result, a belief’s degree of risk is determined by the modal
closeness of worlds in which the belief is similarly held but in fact false
(Pritchard 2017).

Consider a simple case in which you are to formulate a belief about
whether a lottery ticket will win. On Pritchard’s account, a belief or high cre-
dence that the ticket will not win can count as risky, even though it is over-

2. In subsequent discussion, James appears to walk back his endorsement of lighthearted
inquiry, at least in scientific pursuits.
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whelmingly likely to be accurate, because the worlds in which I am wrong
(in which I win the lottery) are extremely similar to the actual world. Since
risk is given in terms of a modal notion of closeness, rather than a measure-
theoretic one, the description of risk is not necessarily sensitive to an agent’s
honest assessment of the probabilities involved. While this is not a problem
if the underlying value at risk is knowledge, where justification is often un-
derstood in terms of safety or sensitivity, it does suggest that the modal ac-
count may be inappropriate for Bayesian epistemology.

Related to this, we could follow Buchak (2013) and attempt to construct a
theory of epistemic risk where the risk attitude is given by a parameter that is
independent of the agent’s utility function. However, since Buchak’s theory
is a nonexpected utility theory, we would then carry the burden of explaining
how it can be made compatible with the prevailing framework of epistemic
utility that has emerged from, for example, Joyce (1998, 2009), Greaves and
Wallace (2006), andLeitgeb andPettigrew (2010). It is important on this frame-
work, as it is in von Neumann and Morgenstern (1944) and Savage’s (1954)
ordinary expected utility theories, that failing to maximize expected utility is
not rational. This is not true on Buchak’s approach.3

3. Formal Framework. Following the literature, I adopt the useful fiction
that an agent is able to choose between competing credence functions. Thus,
credence functions will be the object of risk, and ultimately we seek to com-
pare and rank them in terms of their riskiness. As suggested above, it is nat-
ural in this framework to suppose that one credence function is riskier than
another if the agent stands to lose more in terms of accuracy or that variabil-
ity in accuracy outcomes is greater. This resembles in some respects Peirce’s
(1879/1967) notion of the “economy of research.”4 I develop the theory care-

3. Since Buchak’s risk-averse agents can rationally prefer one bet to another on the basis
of outcomes that are identical between the two bets depending on how those outcomes af-
fect the global distribution of the bet’s payoffs, they can violate the independence axiom of
expected utility theory. As a result, for such agents there is no probabilitymeasure and suit-
able utility function under which we can represent them as maximizing expected utility.
While Buchak defends this approach in ordinary decision making, where certain cases
of preference reversal appear to be intuitively rational (such as the preferences many peo-
ple express regarding the sequence of bets that form the basis for the Allais Paradox), it is
not clear whether (and if so, how) such a defense would extend to the epistemic context.

4. Peirce says, e.g., “The doctrine of economy, in general, treats of the relations between
utility and cost. That branch of it which relates to research considers the relations between
the utility and the cost of diminishing the probable error of our knowledge” (1879/1967,
643). As Rescher (1976) emphasizes, inductive logic is, in Peirce’s view, crucially depen-
dent on economic considerations and reasonable assessment of the risk of different types
of error as well as the value of correct verdicts. Subsequently, Levi (1962, 1974), Maher
(1990, 1993), and Fallis (2007) have suggested similar approaches to epistemic risk.
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fully below. The remainder of this section provides a directed introduction to
the relevant formal concepts.

I assume that an epistemically rational agent should adopt as her credence
function a probability distribution whose expected inaccuracy is at least as
low as any alternative distribution she might adopt.5 This is Joyce’s (1998)
norm of gradational accuracy. It captures the veritist spirit in a context of
fine-grained subjective uncertainty. Minimizing expected inaccuracy plays
a role in epistemic utility theory similar to what maximizing expected utility
plays in ordinary decision theory. Tomeasure inaccuracy,we use a scoring rule.
This is a two-place function s :f0, 1g � ½0, 1�→R, denoted by sv( p(h)), that
measures the inaccuracy of the probability assigned to h when the true out-
come is v, where v 5 1 if h is true and 0 otherwise.

Three properties of scoring rules will be relevant to my argument: truth-
directedness, continuity, and strict propriety. Truth-directedness implies that
s1( p) is a decreasing function of p and s0( p) is an increasing function of p.6

Thus, moving closer toward the actual truth-value cannot make an agent
worse off.Continuity implies that s1 and s0 are continuous functions of p. This
enables us to avoid arbitrarily small changes in credence leading to large
changes in accuracy. Before we define strict propriety, we need to introduce
one more concept. The expected inaccuracy of a probability distribution is
the expectation of sv( p) evaluated with respect to the agent’s beliefs, b 5
b(h). In the binary case, this is

Eb½sv( p)� 5 bs1( p) 1 (1 2 b)s0( p): (1)

If this equation is (uniquely)minimized at b 5 p, the score is (strictly) proper.
This means that a coherent agent can do no better in expectation, from the per-
spective of minimizing inaccuracy, than to adopt as her credence function the
probability distribution that corresponds to her sincere degrees of belief.

One more property will be relevant to my argument. It is not presup-
posed in any of the theorems—rather, it will inform our discussion of the
rationality of different attitudes to epistemic risk. We say that sv is 0/1 sym-
metric if, given two probabilities for h, p(h) and q(h), that are identical ex-
cept that p(h) 5 1 2 q(h), then s1( p(h)) 5 s0(q(h)).

I assume that an agent’s normative attitudes to risk, if they are to be found
anywhere, must be reflected in the prior the agent deems appropriate. As a
result, in developing a measure of epistemic risk, we set aside for now con-
siderations of updating and ask: regardless of one’s evidence about a propo-

5. I restrictmy attention to coherent agents forwhom the credence function is a probability
(this assumption can be relaxed). I generally define scoring rules in terms of inaccuracy.

6. For compactness in simple binary cases, I often suppress the arguments of credence
functions and write p instead of p(h).
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sition, what structural features make one credence function riskier than an-
other? Of course, it is also important to consider what makes one update risk-
ier than another. Equivalently, howmuch epistemic risk might be justified by
the agent’s evidence? These are questions about dynamic epistemic risk, and
I pursue them in subsequent work.7

4. Epistemic Risk: The Simple Case. Consider an agent formulating a
credence p(h) about a single proposition h. Regardless of h’s content, we
know that the agent’s inaccuracy decreases as her credences get closer to
the truth and that it increases as they get further away from it. Since s1 is con-
tinuous and decreasing on [0, 1] with s1(1) 5 0, and s0 is continuous and in-
creasing on [0, 1] with s0(0) 5 0, the intermediate value theorem guarantees
that there exists a point of intersection p* forwhich s1( p*) 5 s0( p*). For 0=1
symmetric scores, this is 0.5. For asymmetric scores it may be something
else. Figure 1 illustrates this situation. Figure 1a depicts a symmetric score,
whereas figure 1b depicts an asymmetric one.

The point p* may be thought of as the least risky probability assignment
in the following sense: if the agent’s credence for h is given by p*, her inac-
curacy will be the same regardless of the actual truth-value for h. As a result,
she knows with certainty how inaccurate she will be, even before she learns
whether h is true or false.

It is natural to think of a guarantee in one’s outcome as implying an absence
of risk. Indeed, this is the purpose of ordinary insurance: to charge a premium
for guaranteeing a particular outcome (and, in turn, removing risk)—hence,
‘risk premium’. The outcome in insurance contexts is given in monetary
terms. Here the same idea applies, but the relevant commodity is accuracy,
and therefore the outcome is given in inaccuracy as measured by a scoring
rule. Informally, therefore, we might identify p* as the least risky probability
in the sense that it guarantees a certain inaccuracy score, regardless of out-
come. Since the choice of scale in constructing a risk measure is arbitrary,
we may call p* the risk-free credence and define it more formally as follows.

Risk-free credence. Given a single proposition h the risk-free credence
p(h) 5 p* satisfies the equation s1( p*) 5 s0( p*).

Now suppose that the agent has a stronger credence for h, say 0.8. Then
if h is true, her inaccuracy will be very low, but if h is false, her inaccuracy
will be quite high. Since p(h) 5 0:8 creates an opportunity for the agent

7. Note that every scoring rule may be associated with a measure of divergence between
a prior and a posterior (Savage 1971). I use this link to connect the theory of risk devel-
oped here to a theory of dynamic risk for competing update rules.
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(the probability of doing better) together with a corresponding potential cost
(the probability of doing worse), it is in this sense a riskier credence relative
to p* on the alethic approach. A natural measure for this increase in risk is
the spread between s1 and s0, as depicted by the shaded areas in figure 2,
because this quantity increases monotonically with shifts of probability to
the tails of the risk-free distribution.8 Figure 2a depicts the increase in risk
from a 0=1 symmetric score’s risk-free credence, whereas figure 2b depicts
the increase in risk from an asymmetric score’s risk-free credence.

Notice, however, that it is less sensible to speak about one credence func-
tion being riskier than another if we vary the number of possible outcomes
in the sample space. With three outcomes instead of two, the risk-free prob-
ability would occur where s1( p) 5 s2(q) 5 s3(1 2 p 2 q). Assuming a 0=1
symmetric score, this would be the uniform distribution p 5 q 5 1=3. So to
evaluate the riskiness of a credence function over three outcomes, we should
measure the “spread” from the risk-free distribution for this larger space (we
will see how to do this later). In light of these remarks, we may define a risk
measure for the single proposition case as follows.

Epistemic risk. Given a single proposition h and a risk-free credence p*,
the risk associated with investing credence p < p* in h is

R( p) 5

ðp*

p

js1(t) 2 s0(t)j dt:

For p > p*, the bounds of integration are reversed. For p 5 p*,R( p) 5 0.

8. One may also consider the absolute value Fs1 2 s0F, as Joyce (2015) suggests. These
two notions are closely related. I opt for density because it encodes more information
about the agent’s normative attitudes to risk, as it is sensitive to the curvature of the scores
between the risk-free point and the target credences. As a result, this approach may be
thought of as a more complete measure of a credence function’s risk.

Figure 1. Risk-free probabilityp*,where s1( p*) 5 s0( p*):a, symmetric score;b, asym-
metric score. Color version available as an online enhancement.
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Provided the scoring rule is continuous, the risk functionwill be likewise con-
tinuous. Its local maxima will occur at p(h) 5 0 and p(h) 5 1. Since the
scoring rule must be monotonically decreasing as the credence approaches
the true value, risk monotonically increases away from the risk-free cre-
dence.9

5. Risk and Normativity. Any move away from the risk-free credence
threatens to increase inaccuracy, by either increasing confidence in h when
it is false or decreasing confidence in h when it is true. Whether one deems
the direction important reflects a substantial normative attitude toward the
cost of approaching different types of error. As p(h) goes up, one risks in-
creasing inaccuracy in the direction of a false positive (type I) error. Mean-
while, as p(h) goes down, one risks increasing inaccuracy in the direction of
a false negative (type II) error.10 It is doubtful that the only rational attitude to
these types of error is indifference (as 0=1 symmetry suggests). Being solely
concerned with the truth, as Gibbard (2008) points out, does not commit one
to a particular way of valuing accuracy. As a result, we want our measure of
risk (and associated scoring rule) to reflect different trade-offs that agents
might make between moving toward either type of error.

For example, h could be the outcome of a coin toss, where unit increases
in inaccuracy in the direction of falsely predicting h (heads) are about as bad
as unit increases in inaccuracy in the direction of falsely predicting its nega-
tion (tails). This set of attitudes to error is adequately captured by a 0=1 sym-

Figure 2. Increasing epistemic risk:a, symmetricmeasure of risk; b, asymmetricmea-
sure of risk. Color version available as an online enhancement.

9. I define epistemic risk with respect to the Lebesgue measure on the real line. It would
be interesting to explore how the results below fare under different choices of measure.

10. I use the false positive/false negative distinction for illustrative purposes. The no-
menclature can be misleading since we could redescribe the risk of increasing p(h) as
a risk of false negative error by deeming h to be the null hypothesis rather than its ne-
gation. What matters is the agent’s relative attitude to approaching error in different di-
rections, regardless of how we name them.
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metric score, such as the Brier score where sv( p) 5 (v 2 p)2, because an
ε > 0 increase in inaccuracy in the direction of either s1 or s0 from any cre-
dence k ∈ ½0, 1� leads to a decrease in epistemic utility of (k 2 ε)2. Figure 3a
depicts this situation. As a result, the risk of p(h) 5 0:8 (the shaded area to
the right of the risk-free point) is equal to the risk of p(h) 5 0:2 (the shaded
area to its left). Indeed, they are reflections of each other around the risk-free
point. Thus, an agent with this risk function is equally sensitive to unit in-
creases in inaccuracy in the direction of either type of error.

Alternatively, h could be a very informative proposition that the agent is
singularly pursuing. In this case, falsely believing hmay be much better than
falsely believing its negation. The latter may produce an enormous opportu-
nity cost that delays or more permanently inhibits her search for the truth, for
example, whereas the former may take the agent on a misleading line of in-
quiry that can be corrected through subsequent experimentation. In this ex-
ample, unit increases in inaccuracy in the false negative error direction are
worse than unit increases in inaccuracy in the false positive error direction.

One might worry that sensitivity to error appears to depend on consider-
ations that are not purely epistemic. As a result, our measure of epistemic risk
ultimately reflects these other values as well. But this is a feature of the ac-
count rather than a bug. It is compatible with the accuracy framework for
an agent to have pragmatic reasons for the particular way in which she values
accuracy. For example, it is reasonable for a weather forecaster to care more
about false negativemistakes when the hypothesis is “there is a tornado nearby.”
This consideration can be a perfectly good reason for identifying a measure
of inaccuracy.

Such attitudes to error are better captured by an asymmetric score whose
risk function puts more weight on false negative increases in inaccuracy. An
example of this is the score considered in Joyce (2009), where s1( p) 5
(1 2 p)3 and s0( p) 5 ( p2=2)(3 2 2p). Like theBrier score, this score is strictly
proper, continuous, and monotonic. But unlike the Brier score, an ε increase

Figure 3. Epistemic risk as tolerance for different types of graded error: a, symmetric
measure of risk; b, asymmetric measure of risk. Color version available as an online
enhancement.
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in inaccuracy in the direction of s1 from p(h) 5 k leads to a decrease in the
epistemic utility of (k 2 ε)3, whereas an increase in inaccuracy in the direction
of s0 leads to a decrease in the epistemic utility of ε2(3 2 2ε). This situation
is depicted in figure 3b. For this score, a unit move away from the risk-free
credence in the direction of a false positive error leads to a smaller increase
in risk (the shaded area to the right) than a correspondingly large move away
from the risk-free credence in the direction of a false negative error (the
shaded area to the left). As a result, the risk of p(h) 5 0:8 is not equal to
the risk of p(h) 5 :04 (nor for that matter is it equal to p(h) 5 0:2).11

The symmetry of the embedded scoring rule is encoded in the risk func-
tion itself. In particular, it is reflected by the location of the risk function’s
minimum. As figure 4 shows, a risk function associated with a 0=1 symmet-
ric score will reach its minimum at p(h) 5 0:5 (fig. 4a), whereas if the risk
reaches its minimum elsewhere on the unit interval the embedded score
must be asymmetric (fig. 4b).

I refer to risk functions such as the one in figure 4a as symmetric: it reaches
its minimum at p(h) 5 0:5, and its shape on [0, 0.5) is a reflection of its shape
on (0.5, 1]. Symmetry in the risk function is related to the 0=1 symmetry of
the scoring rule: a scoring rule is 0=1 symmetric only if its associated risk
function is symmetric.

Therefore, we should distinguish at least two different ways of valuing
accuracy: a symmetric risk function corresponds to a way of valuing accu-
racy in which moving away from the truth in either direction is equally bad,
whereas an asymmetric risk function implies a way of valuing accuracy in
which unit changes in the direction of false positives/negatives get weighted
differently at different credal values. Indeed, theymay not be weighted equally
at any place. It is not enough, therefore, to declare that we should seek truth and
avoid error. Such an epistemic norm is underspecified.We need to decide fur-
ther how to trade-off the potential costs of different types of mistakes. The
epistemic risk function is flexible enough to encode different ways of balanc-
ing the competing costs.

So far we have exploited only the location of the risk function. But the
risk function in figure 4b is not just shifted to the left. Speaking picturesquely,
it is also pressed against the y-axis. As a result, there is both a within and be-
tween difference in its concavity: it is (a) steeper to the left of its risk-free

11. Note that there will be an equally risky point in the direction of a false negative mis-
take as p(h) 5 0:8, i.e., the point p(h) 5 g, where

Ð :42
g (s1 2 s0) dt 5

Ð 0:8
:42 (s0 2 s1) dt. But

since this particular score is relatively more sensitive to moving in the direction of a false
negative error, g will be closer in probability to the risk-free credence than 0.8 is to the
risk-free credence. Therefore, while permuting probabilities for symmetric scores does
not affect their risk, for asymmetric scores permuting probabilities does not preserve risk.
However, there exist isomorphisms that would preserve it.
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point than it is to its right, and (b) it is not equally concave as compared to the
risk function in figure 4a, whose embedded score is symmetric. These prop-
erties add further texture to the proposed measure of risk, reinforcing the idea
that risk is a measure of alethic sensitivity to error. To exploit the concavity of
the risk function, we need to revisit another quantity.

Let h( p) 5 s1( p) 2 s0( p). For example, when p 5 0:8, h( p) is a measure
of the length of the dashed vertical line connecting s1 and s0 at 0.8 in figure 3.
The antiderivative of h( p) isR( p). As a result, our definition of epistemic risk
implies that R0( p) is equal in absolute value to h( p). This means that the rate
at which risk increases as we move away from the risk-free point reflects the
increase, in absolute value, between the agent’s best and worst outcomes. As
a result, while the risk function itself reflects the agent’s relative sensitivity
to unit increases in inaccuracy in the direction of different types of error, its
first derivative reflects, instead, the agent’s local sensitivity to risk as a func-
tion of her current credence. It is a measure of marginal increases/decreases
in risk. For example, the derivative of the risk associated with the Brier score
is 2p 2 1. As a result, marginal changes in credence away from the risk-free
point lead to a constant increase in risk, as figure 5a shows. If we let DFP
stand for marginal increases in false positive inaccuracy and DFN stand for
marginal increases in false negative inaccuracy, then a symmetric risk func-
tion (such as the Brier score’s) implies that DFP 5 DFN.

By comparison, the derivative of the risk associated with the asymmetric
score we have been considering is 2(3=2)p2 1 3p 2 1 (fig. 5b). For this
score, marginal changes in credence away from the risk-free point in the di-
rection of a false negative error lead to bigger changes in risk relative to mar-
ginal changes in credence away from the risk-free point in the direction of
a false positive error. The agent applying this particular asymmetric score
is more worried about marginal increases in false negative inaccuracy than
she is about marginal increases in false positive inaccuracy. For this partic-
ular asymmetric risk function, DFN > DFP. This corresponds to the exam-

Figure 4. Epistemic risk function: a, symmetric risk function; b, asymmetric risk
function. Color version available as an online enhancement.
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ple described above, where h is so important that rejecting it leads to substan-
tial epistemic opportunity cost.

Moreover, marginal increases in risk taper off as the agent approaches cat-
egorical false positive error. This makes sense from a Bayesian perspective
of scientific inquiry, since having credence .05 in a true and important prop-
osition is not that different from having credence .01 in the same proposition.
In both cases, the agent will likely not pursue the idea further. Meanwhile,
given her concern about false negative error, her anxiety in that direction per-
sists, leading to near constant marginal changes in risk across the whole [0,
.42) subinterval.

We can see this dimension of the agent’s attitude to risk in the second de-
rivative of the risk function. Gibbard (2008, 9) calls R0 0( p) an indicator of the
urgency the believer ascribes to getting credences right, by her lights, in the
vicinity of p. For the Brier score, R00(p) 5 2. No matter where the agent’s
credence is on the unit interval, her local sensitivity to being mistaken re-
mains the same. For our asymmetric score, R00( p) 5 3 2 3p. This is exactly
what we described in the previous paragraph. This is a constantly decreasing
function from 0 to 1. The agent’s peak local sensitivity to error occurs at cat-
egorical false negative error and slowly tapers off as she approaches false
positive error. Given the sensitivity of this particular score to false negatives,
that is to be expected because p(h) 5 1 is where false negatives are elimi-
nated altogether.

One might wonder whether this is a reasonable attitude to false positive
error. But this example should not be taken as an endorsement of this partic-
ular risk function. Rather, I use it to illustrate the flexibility of the proposed
approach to capturing a wide range of attitudes to epistemic risk. The con-
cavity of the risk function resembles in some respects the Arrow/Pratt mea-
sure of risk aversion for ordinary economic prospects, where the normalized

Figure 5. Rate of change in epistemic risk: a, constantly increasing epistemic risk
aversion; b, unequally increasing epistemic risk aversion. Color version available as
an online enhancement.
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second derivative reflects an agent’s relative sensitivity to the ordinary risk
of monetary loss (Pratt 1964; Arrow 1965, 1971).12

6. Risk and Generalized Entropy. When equation (1) is uniquely mini-
mized at b 5 p (i.e., the scoring rule is strictly proper) it may be rewritten as
follows:

Ep½sv( p)� 5 ps1( p) 1 (1 2 p)s0( p): (2)

Following Grunwald and Dawid (2004), I refer to this function, Eb[sv( p)] in
which b 5 p, as H(p), the generalized entropy. Let me explain why, as this
will be relevant later. Suppose w(p) is a measure of information conveyed by
learning that the event h occurs with probability p. What conditions shouldw
satisfy? This is the question Shannon (1948) seeks to answer. His famous
result is a representation theorem showing that the logarithmic construction
w ð p) 5 k  log( p) uniquely satisfies several intuitively plausible constraints
on a measure of information—namely, that w should be a decreasing, con-
tinuous, and additive function of p. By the same token 2w( p) measures a
lack of information, and Shannon entropy is the expectation of w( p) with
k 5 21.

In the binary case, Shannon entropy becomes 2½ p log( p)1 (1 2 p)
log(1 2 p)�. This is equivalent to the expected inaccuracy of the log score,
which is strictly proper. But we can think more generally about an entropy
function H associated with other strictly proper scoring rules—the weighted
average of a different strictly proper score function of the probability. This is
generalized entropy. Generalized entropy is an important building block in
epistemic utility theory because Savage (1971) gives us a recipe for deriving
strictly proper scores from entropy by showing that every twice differentia-
ble concave entropy function corresponds to a strictly proper scoring rule, as
follows:

sv( p) 5 H( p) 1 (v 2 p)H 0( p), (3)

where v is the 0=1 truth-value for the event in question. This relationship is ex-
tremely useful. As long as we start from a twice differentiable H(p) concave
on [0, 1], we can derive a continuous, truth-directed, strictly proper score.

The entropy function H is closely related to our measure of epistemic risk,
R. For example, for the Brier score, risk is equal to p* 2 p(1 2 p), whereas

12. It has been noted in the literature that the convexity of a scoring rule implies aversion
to epistemic risk in the following sense: suppose an agent is offered a pill that would, with
equal probability, raise or lower her credence in h by k ∈ ½0, 1�. If the scoring rule is con-
vex, such a pill would look unattractive in expectation because losses are weighted more
heavily than gains (Joyce 2009).
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entropy is p(1 2 p). This relationship is depicted in figure 6a. Meanwhile,
for our asymmetric score risk is p* 2 p( p 2 1)( p 2 2), whereas entropy is
p( p 2 1)( p 2 2). We can see this in figure 6b.

The following theorem establishes that this duality between generalized
entropy and epistemic risk holds for all strictly proper scoring rules.

Theorem 1. For strictly concave and twice differentiable entropy func-
tion H and risk function R defined on [0, 1], R( p) 1 H(p) 5 k, where
k 5 minpR( p) 5 maxpH( p).

Proof. See the appendix.

In other words, the sum of risk and entropy is constant: risk 1 entropy 5 k.
In general, therefore, entropy is a scaled reflection of epistemic risk around
the risk-free point R( p*) 5 k, as figure 6 suggests. But the risk-free cre-
dence is also the maximum entropy credence. Therefore, rearranging the du-
ality equation suggests that epistemic risk may be expressed as a measure of
entropic change from the maximum entropy credence to the target credence:
R( p) 5 H (p*) 2 H( p). We will use this expression below to develop a more
general measure of epistemic risk.

Note that since we have defined risk in terms of expected inaccuracy,
it follows that for a fixed credal value p(h) 5 k, the risk associated with k
is constant. In other words, given any credence, while it is true that the agent’s
accuracy for that credence is a random quantity, because the agent does not
know whether h is in fact true or false, the amount of risk the agent assumes
is fixed, because it is a function of the distance between those two outcomes.
As a result, we cannot evaluate epistemic risk from a different credal point.
Therefore, while we may consider accuracy in expectation, on this account
we should avoid talking about expected epistemic risk. This will be rele-
vant as we consider the import of epistemic risk to the selection of priors
in section 8.

Figure 6. Duality between epistemic risk and entropy; a, symmetric case; b, asym-
metric case. Color version available as an online enhancement.
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Since epistemic risk is dual to entropy, one might question whether we
need to introduce a notion of risk, given the large literature on entropic infer-
ence.13 Rather than speaking in terms of increases in epistemic risk, we could
instead describe the same changes in terms of decreases in entropy. Although
this is true for strictly proper scoring rules, with the effect that risk and en-
tropy are often coextensive, they are independently motivated. We saw this
while developing the notion of epistemic risk in terms of sensitivity to differ-
ent types of graded error. That is, I am not arguing that the risk-free credence
function is risk-free because it maximizes entropy. Rather, it is risk free, as
we saw, because it eliminates variability in terms of the epistemic outcome.
Strictly proper scoring rules have the feature that these two properties do
not come apart. For many other scoring rules, we could eliminate variability
without maximizing entropy. In such cases, the duality would not apply, and
we could not measure epistemic risk in terms of entropic change.

Therefore, even though risk and entropy are extensionally equivalent for
strictly proper scoring rules, thinking in terms of risk minimization is con-
ceptually very different from thinking in terms of entropy maximization.
An agent might prefer risk-free credences not because they do not go beyond
the evidence, even though that might be true, but because from her perspec-
tive they give her the best balance of graded error costs. There is a conceptual
difference between thinking in terms of minimizing the amount of informa-
tion an agents brings into the inference problem (the entropic interpretation)
and identifying an appropriate trade-off between different types of potential
mistakes (the risk interpretation). As a result, we should not think of one con-
cept being reducible to the other. The duality theorem shows that for many
scoring rules, entropy and risk are two different ways of conceptualizing the
same underlying epistemic facts.

Indeed, insofar as proponents of entropic methods reference risk, it is as-
sumed that a credence function is risk averse because it maximizes Shannon
entropy. Jaynes is the most ardent proponent of this position. For Jaynes, the
maximum entropy distribution is the most conservative distribution in the
sense that it does not permit us to draw any evidentially unwarranted conclu-
sions because it is “as smooth and spread out as possible” subject to the data
(Jaynes 1963/1983, 186). But consider an entropy function that reaches its
maximum at p(h) 5 0:9. An entropy-maximizing agent with this function
would not be conservative at all in Jaynes’s sense. In the absence of any data,
she would predict h’s occurrence with high confidence. Therefore, for asym-

13. For example, Jaynes (1957, 2003) defends maximum entropy methods for identify-
ing priors, whereas Williamson (2010) goes further and defends updating by maximiz-
ing entropy as well. Seidenfeld (1986) contains a thorough discussion of the relationship
between Bayesian epistemology and entropic methods.
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metric risk functions the least risky distribution will not be maximally uni-
form.

7. Epistemic Risk: The General Case. So far we have considered cre-
dence functions for a single proposition h. Now let the sequence fhign

i51 form
a partition on sample space S. The risk-free credence function becomes the
distribution that solves the equation sv( pi) 5 sw(pj) for all i, j and indicators
of truth-value v, w. Since this expression is unwieldy with many outcomes,
we can instead identify this as the point of maximum general entropy. Be-
cause entropy is the expected inaccuracy of a strictly proper scoring rule, ex-
pressing risk in terms of entropic change enables us to harness helpful prop-
erties of expectation.

To make use of these properties, we require a random variable and its cu-
mulative distribution function (cdf ). A cdf is just a different way of express-
ing a probability distribution. Let X : S →R be a random variable that maps
outcomes in the sample space to the real numbers and whose mass/density
is given by f (X 5 x). For each value of x the cdf, defined as F(X ≤ x) 5
oxi≤ x f (x) (for discrete X ) and

Ð x
2∞ f (t) dt (for continuous X ), gives us the prob-

ability that X is less than or equal to that value. For example, if the random
quantity X represents the numerical outcome of a single toss of a die, then
F(X ≤ 3) 5 1=2 and F(X ≤ 4) 5 2=3.

For our purposes, every outcomemay be described in terms of the agent’s
inaccuracy if that outcome occurs. Therefore, we can define outcomes in
terms of random variables as follows: let X be a random variable that maps
outcomes from the sample space to the real numbers, where the real numbers
represent inaccuracy given by s. For every valid probability distribution on
the sample space, there exists an induced probability distribution on X that is
likewise valid. The possible values of the random variable now represent in-
accuracy scores. Many scoring rules will take values on a small subinterval
of R. For example, under the Brier score all outcomes are mapped to [0, 1].
Changing the underlying scoring rule will rescale the random variable. There-
fore, when evaluating credence functions in terms of their epistemic risk, we
need to identify a random variable that describes outcomes in terms of some
particular measure of inaccuracy. With this in mind, we can define the risk-
free cdf as follows.

Risk-free cdf. Let W ⊆ R be the image of scoring rule s. Given a random
variable mapping outcomes from the sample space S to inaccuracy given
by s, X : S→W , the risk free cdf P* 5 arg maxPHP(X ).

To simplify, I denote the entropy of cdf P as H(P) instead of HP(X ) (a
common abuse of notation, since entropy is a property of the probabilities).
As emphasized above, P* is not risk free because it maximizes entropy.
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Rather, this is the probability assignment that eliminates variability in terms
of epistemic outcome, which is how we defined the risk-free credence in the
simple case. We can now extend our definition of epistemic risk as follows.

General epistemic risk. Given a random variable X : S→W , whereW is
defined as above, let cdf P* 5 arg maxPH (P). Then theorem 1 suggests that
a natural extension of the notion of epistemic risk to larger partitions would be
to define the epistemic risk of another cdf P by R(P) 5 H(P*) 2 H(P).

Recall that in the simple case, this definition was motivated as a measure of
the “spread” between the agent’s inaccuracy if the proposition is true and her
inaccuracy if the proposition is false. It remains to be shown that the general
definition given here is motivated by the same underlying conceptual frame-
work.

To see that this is indeed the case, I draw on Rothschild and Stiglitz’s
(1970) notion of a mean-preserving spread. Informally, one probability dis-
tribution is a mean-preserving spread of another if the second is a transforma-
tion of thefirst obtained by pushing probabilitymass/density to the tails of the
distributionwithout affecting its expected payoff. In the case of ordinary eco-
nomic lotteries, distributions are given in terms of wealth. For example, a lot-
tery that pays $0 or $10with equal probability is a mean-preserving spread of
one that pays $6 or $4, or one that guarantees $5.

In the epistemic context, the outcomes of a “lottery” cannot be specified
exogenously. Rather, the scale (i.e., scoring rule) is exogenous, but the out-
come, given in terms of that scoring rule’s inaccuracy, depends on the prob-
ability assignment itself. For example, assuming the Brier score, a credence
p(h) 5 0:8 in a single proposition h is effectively an epistemic lottery that
pays (1 2 0:8)2 5 :04 if h is true and (0 2 0:8)2 5 :64 if h is false. Now
consider a more extreme credence like p(h) 5 0:9. The latter is a probabilistic
spread of the former because it is a transformation accomplished by taking
the probability assigned to h and making it even more extreme while at the
same time taking the probability assigned to its negation and making it corre-
spondingly more extreme in the opposite direction. Assuming the agent is co-
herent, there is a quantity that is preserved every time we spread out probabil-
ity like this, namely, the simplemean given by 1=jSj, where FSF is the length of
the partition. As long as we keep this quantity fixed, every such spread guaran-
tees an increase in risk. In this sense, a mean-preserving spread of a credence
function implies an increase in that credence function’s epistemic risk. By
expressing a credence function in terms of its cdf, we can give a general def-
inition of mean-preserving spreads and prove this relationship.

For example, suppose {h1, h2, h3} is a partition on S and we want to mea-
sure the epistemic risk of credence function p (or equivalently, its cdf P)
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given by h1/5, 3/5, 1/5i under the Brier score.14 Since the Brier score is
0/1 symmetric, we know that its risk-free credence function p* is the uni-
form h1/3, 1/3, 1/3i.

Before we move on, note that everything we say below will hold for non-
symmetric scoring rules as well. To illustrate, we could use instead a non-
symmetric weighted quadratic score that determines the accuracy assigned
to proposition h by (v 2 pr(h))2 1 m=n, where h is the mth cell in a parti-
tion and n is the number of cells. If ordering the cells is not appropriate, we
could determine the weights some other way. The important thing is that the
weights capture our attitudes to error with respect to each possible outcome.
With three propositions again, the risk function of such a score would be
minimized with the probabilities h.17, .30, .53i. These are now the (non-
uniform) risk-free credences. Notice that the probabilities increase from the
first cell to the last. This is to be expected because such a scoring rule penal-
izes errors with increasing severity as we move up the sequence generating
the partition. Because we are most sensitive with respect to errors in the di-
rection of h3, that outcome is most sticky, so to speak, and the risk-free cre-
dences are extra cautious in its direction.

In any case, to keep things simple, I will continue with the symmetric ex-
ample. To evaluate the spread of our target credence function from the risk-
free credences, we write the cdfs of both credence functions, P and P*, as
follows:

P* 5

0 for x < (1=3)2

2=3 for (1=3)2 ≤ x < (2=3)2

1 for x ≥ (2=3)2

8>><
>>:

P 5

0 for x < (1=5)2

4=5 for (1=5)2 ≤ x < (4=5)2

1 for x ≥ (4=5)2

8>><
>>:

Figure 7a depicts the plot of each cdf. The arrows indicate the spread in
probability generated by moving from P* to P. This is harder to visualize for
discrete cdfs. To make the idea more intuitive, figure 7b depicts two arbi-
trary cdfs of a continuous random variable X, where one is a mean-preserving
spread of the other.

Notice that for any value of X, representing an outcome in terms of inac-
curacy, the area underneath the dashed (risky) curve is greater than or equal
to the area underneath the solid (safe) curve. Following Rothschild and Stig-
litz (1970), we can use this quantity to define mean-preserving epistemic
spreads.

14. In general, I use lowercase for the mass/density and uppercase for the cdf.
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Mean-preserving epistemic spread.Given a random variable X : S →W ,
where W is defined as before, let P and Q be two cdfs. Then Q is a mean-
preserving epistemic spread of P if, for all x, ox

i50P(ti) ≤ ox
i50Q(ti) (if X is

discrete) and
Ð x
0P(t) dt ≤

Ð x
0Q(t) dt (if X is continuous).

In the single proposition case, this implies that one probability q(h) is a mean-
preserving epistemic spread of another probability p(h) if js1(p) 2 s0( p)j <
js1(q)2 s0(q)j. This is consistent with our definition of epistemic risk in the sim-
ple case as the integral of the absolute difference between s1 and s0. Therefore,
by using mean-preserving epistemic spreads to measure risk, we measure the
difference in area underneath the risk-free cdf and the target cdf. In figure 8,
this is the difference of the two rectangles labeled A and the rectangle labeled B.

Figure 8. Epistemic risk as entropic change. Color version available as an online
enhancement.

Figure 7. Mean-preserving epistemic spreads; a, discrete credence function; b, con-
tinuous credence function. Color version available as an online enhancement.
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This measure of epistemic risk, in terms of the change in area underneath
the cdf, developed by analogy to Rothschild and Stiglitz’s (1970) approach
to ordinary risk, preserves the motivation given for measuring epistemic
risk in the simple case as sensitivity to approaching different types of error.
In the general case, however, epistemic risk reflects an agent’s sensitivity to
graded inaccuracy with respect to any given outcome in the sample space.
As a result, we no longer have type I and type II errors only. Instead, we have
n error types for jSj 5 n possible outcomes.

We are now in a position to show that our definition of epistemic risk in
terms of entropic change corresponds to the general interpretation of episte-
mic risk given in terms of mean-preserving epistemic spreads. For any given
cdf P, as the area underneath it, given by on

i51P(xi) (for discrete X ) orÐ
XP(x) dx (for continuous X ), decreases, the quantity 1 2 on

i51P(xi) (for dis-
crete X ) or 1 2

Ð
XP(x) dx (for continuous X ), increases. In figure 8, for ex-

ample, for each cdf, this is the area to its left and bounded above by the line
P(X ≤ x) 5 1. This quantity is equal to the expectation of X. This relation-
ship is a consequence of Fubini’s Theorem. Importantly for us, since X maps
outcomes to inaccuracy scores, the expectation of a random variable X with
cdf P is precisely the entropy of P, H(P), provided the underlying inaccuracy
scale given by s is strictly proper. Furthermore, on any given sample space S,
the risk-free cdf will be the cdf that has the smallest area underneath it.
Equivalently, it will be the cdf that has the largest area to its left. We can see
this in figure 8. In more familiar words, the risk-free credence is the maxi-
mum entropy credence. Again, however, it is risk free not because it maxi-
mizes entropy but rather because this is the point where the agent’s sensitivity
to graded error in the direction of every possible outcome in the sample space
is equal. And again it turns out, as in the simple case, that for strictly proper
scores this is also the point that maximizes entropy. Therefore, as measured in
terms of mean-preserving epistemic spreads, risk may be given as the differ-
ence between the entropy of the risk-free cdf and the target cdf. This is pre-
cisely the quantity A–B in figure 8, and it corresponds exactly to how we have
defined epistemic risk, as H (P*) 2 H (P).

For example, consider the cdfs depicted in figure 8. To measure the risk
of P, we first determine the entropy of the risk-free P*. The area to the left of
its cdf is a sum of two rectangles: one of length 1/3 and width 2(1/3) and an-
other of length 2(1/3) and width 1/3. This is 4/9. Next, we determine the en-
tropy of P. Following the same approach, we get 8/25. Since risk is given in
terms of entropic change, the risk of P is 4=9 2 8=25 5 :12. This leads to
the following theorem.

Theorem 2. Given a random variable X : S →W , where the underlying scor-
ing rule s is strictly proper, and two cdfs P and Q, if P is a mean-preserving
epistemic spread of Q, then R(P) > R(Q).
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Proof. See the appendix.

As a result, every mean-preserving epistemic spread increases variability in
the underlying outcomes, increases risk, and (if s is strictly proper) decreases
entropy.

Since the approach we have developed requires identifying an inaccuracy
scale before evaluating the risk of a credence function, one might reasonably
wonder how general the risk ordering of credence functions will be. For ex-
ample, suppose we have the same two credence functions as in the previous
paragraph, p* 5 h 1=3, 1=3, 1=3 i and p 5 h 1=5, 3=5, 1=5 i, but we define
epistemic outcomes logarithmically instead of quadratically. That is, the x-
axis nowmeasures inaccuracy in terms of the log score. The y-axis still mea-
sures cumulative probability. Would it still be the case that R(P) > R(P*)? If
so, would the risk order be preserved for any arbitrarily chosen set of cdfs?

For most families of scoring rules considered in the literature, including
some improper scores, the risk ranking of credence functions will be consis-
tent. This includes the Brier, log, spherical, and absolute value scores. But it
does not include the asymmetric score we have been considering throughout.
This is because the asymmetric score has a different risk-free point, and risk is
measured in terms of deviation from that risk-free point. Of course, if we take
two asymmetric scores with the same risk-free point, wherever it happens to
be, then it is very likely that the risk ordering between themwill be consistent.
Specifically, for any two scoring rules, if they share the same risk-free point,
and their risk function is convex, then the risk order of credence functions
between them will be consistent. The following theorem captures this rela-
tionship.

Theorem 3. Given a random variable X : S→W , whereW ⊆R is the im-
age of scoring rule s, let V 5 fP1, ::: , Png be a set of cdfs for X. Given a
random variable Y : S→W *, where W * ⊆R is the image of scoring rule
s*, let U 5 fQ1, ::: ,Qng be a set of corresponding cdfs for Y. This means
that for each outcome h ∈ S, the probability assigned to h by Pi is equal to
the probability assigned to h by Qi, but whereas in the first case the out-
come h is described by s, in the second case it is described by s*. Suppose
(1) s and s* are truth-directed scoring rules, whose risk functions R and R*

are such that (2) R00 > 0, R*00 > 0, and (3) arg min R 5 arg min R*. Then
R(Pi) > R(Pj) if and only if R(Qi) > R(Qj).

Proof. See the appendix.

This result expands the reach of our approach to epistemic risk to the vast
majority of commonly considered families of scoring rules.

That is not to say, however, that all information encoded in the risk func-
tion will be preserved across different scoring rule transformations of it. Con-
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sider the Brier and log risk functions. While they are both convex and share
the same risk-free point, their derivatives are different. As a result, while a
Brier-to-log transformation preserves an agent’s risk ordering, it does not pre-
serve her attitudes to unit changes in inaccuracy nor does it preserve her local
sensitivity to marginal changes in risk. We could have two agents who rank
two prospective credence functions equally in terms of risk, yet while one
agent finds that degree of risk tolerable, the other considers it to be inappro-
priate, because of differences in the way they evaluate the potential cost of
increasing graded inaccuracy in the direction of any given outcome. This is
to be expected, however. We would not want a risk function that erases well-
known differences between these scores. As Selten (1998) emphasizes, the
log score is hypersensitive in the sense that one’s inaccuracy goes to infinity
as the probability assignment goes to 0 or 1. This hypersensitivity is reflected
in the curvature of its associated risk function.

Before wemove on, it is worth pausing to clarify the relationship between
measures of epistemic risk and measures of attitudes to it. In ordinary eco-
nomic theory, mean-preserving spreads are used to generate a partial order-
ing of stochastic alternatives in terms of their degree of risk. Meanwhile, the
curvature of an agent’s utility function reflects her sensitivity to risk. Roth-
schild and Stiglitz (1970) are so influential because they show that risk-averse
agents prefer less risky lotteries to more risky ones, as we would expect. In
the epistemic case, we have a similar relationship, to an extent. The episte-
mic risk function enables us to rank prospective credence functions in terms
of their risk. Meanwhile, an agent is risk averse if her scoring rule is con-
vex. And in the absence of information, an agent with a convex scoring rule
would prefer a less risky credence function to a more risky one.

Risk increases with mean-preserving spreads in accuracy, and all truth-
directed scoring rules with the same risk-free point agree on this ranking,
regardless of their convexity. But the way risk is judged by agents to in-
crease—the rate and acceleration of the increase in risk—reflects the agents’
attitudes to risk. Such attitudes originate in the curvature of their scoring rule
(i.e., the way they value accuracy). As a result, the risk ranking of credence
functions in epistemology is not completely independent from the agents’
attitudes to risk in the way that stochastic dominance is independent of a util-
ity measure. This is inescapable, however. In economic theory, the probabil-
ities and outcomes are both exogenously specified (e.g., the monetary prizes
are determined in advance and their associated probabilities given by a rou-
lette wheel), whereas in epistemology the accuracy outcomes are a function,
in part, of the way probabilities are distributed. In other words, in the episte-
mic case one’s payoff is directly determined by the probability one assigns to
that outcome. By contrast to economic lotteries, we do not have probabilities
for the outcomes that are specified from the outside and independent of the
“money” (i.e., probability) wagered on them.
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8. Risk, Priors, and the Principle of Indifference. By developing a the-
ory of accuracy dominance Joyce (1998, 2009) gives us a powerful tool for
evaluating the quality of an agent’s beliefs. The theory of epistemic risk en-
ables us to go further in terms of our understanding of the normative dimen-
sions of an agent’s credal state. One might ask how these attitudes to risk will
manifest themselves. Nearly everyone in the literature agrees that an agent
should choose the credence function that, in light of her evidence, minimizes
her expected inaccuracy. As a result, attitudes to risk are not going to play a
direct role in one’s choice (fictional or otherwise) of what to believe. But this
is not the role of risk in ordinary expected utility theory either. We do not
consult our sensitivity to risk in order to make a choice. Instead, our choice
reflects our attitudes to risk. Roughly the same is true in the epistemic case.

However, risk attitudes can play a more direct role at the beginning of
one’s epistemic practices: in particular, agents’ attitudes to risk (i.e., how
much of it they are willing to assume) together with the shape of their risk
function (e.g., symmetric, nonsymmetric) can motivate a choice of prior in
the absence of information. The Laplacean POI is often given as a crude guide
for this task. In the absence of information to privilege one outcome over
others given a partition of the sample space, one should assign equal proba-
bility to each. It is assumed, therefore, that given an appropriate partition the
POI recommends uniform credences. The most well-known problems with
this principle stem from its association with uniformity. In particular, the uni-
form distribution over one partition may be logically inconsistent with the
uniform distribution over a simple transformation of that partition.15 Episte-
mic risk provides a new perspective on the POI—one that enables us to dis-
sociate it from uniformity.

If we have an agent whose risk function is convex and symmetric, then
the credence function that obtains minimum epistemic risk will be uniform.
This is because a symmetric and convex epistemic risk function is associated
with a 0/1 symmetric scoring rule. The proof of this is trivial. Under such a
score, an agent would be indifferent between taking a bet whose payoffs are
given in terms of inaccuracy on any proposition when the probabilities as-
signed to them are equal. Therefore, minimizing epistemic risk under these
conditions suggests the same credence function as the ordinary Laplacean
POI. As a result, we can think about the Laplacean POI as a heuristic for
identifying the risk-minimizing credences under a very particular class of
risk functions. However, it is only in the special case of convex and symmet-
ric risk functions that indifference and uniformity are guaranteed to coincide.

15. For example, as John Venn first observed, a uniform distribution over X is not uni-
form over X 2. Van Fraassen (1989) makes this point vividly using the example of a box
whose dimensions are unknown and may be measured in terms of side length or volume.
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This line of thought enables us to go further. We can consider risk-
minimizing heuristics for risk functions that do not satisfy these conditions.
For such risk functions, the credences that obtain minimum risk will be such
that the agent is indifferent with respect to taking a bet on any outcome, but
they will not be uniform. Therefore, we may think of each risk function as
having its own associated POI, but when convexity and symmetry are not
satisfied it is not guaranteed to be Laplacean. By recasting the Laplacean
POI as a risk minimization principle, we can identify the normative commit-
ment presupposed in its endorsement. In particular, it requires the agent to
care equally about approaching different types of error. Just as importantly,
we can sever its association with uniformity. For scoring rules that are not
0/1 symmetric, there will be a credence function in which the agent is indif-
ferent regarding the outcomes, but it will not be uniform.16

To illustrate the relationship between epistemic risk and indifference
principles, supposewe have two agents, A andB,whose risk functions, given
a simple partition involving h and its negation, are given by the symmetric
and asymmetric risk functions we have been considering, as follows:

rA( p) 5 p* 2 p(1 2 p) rB( p) 5 p* 2 p( p 2 1)( p 2 2)

These functions are depicted in figures 4a and 4b, respectively. A’s epistemic
risk function is associated with the ordinary Brier score. Therefore, if A seeks
to minimize epistemic risk in the absence of information his credence func-
tion will be (0.5, 0.5). Under these conditions, minimizing epistemic risk and
applying the ordinary Laplacean POI give the same recommendation. Now
consider B. Given her risk function, the risk-free credences are (.42, .58).
Given these credences, B would be indifferent between taking a bet on h or
its negation. But this credence function is not uniform. In other words, (.42,
.58) is the prior credence function recommended by a non-Laplacean indiffer-
ence principle associated with B’s nonsymmetric epistemic risk function.17

16. Note that it will not always be possible to infer an agent’s risk function and her at-
titudes to epistemic risk from information about her credences alone. That is, if we learn
that the agent’s credence for h is, say, 0.75, we may not know whether this is because the
agent is an epistemic risk minimizer with a nonsymmetric epistemic risk function or an
epistemic risk taker with a symmetric epistemic risk function. A similar screening prob-
lem faces someone attempting to read off ordinary risk attitudes from information about
preferences. For instance, suppose an agent declines to pay $1 for a bet that pays $2 if a
certain coin lands on heads and $0 otherwise. This may be either because the agent is
risk averse and assigns equal probabilities to heads and tails or because the agent is risk
neutral but believes the coin to be biased toward tails.

17. One might worry that an agent considering her expected epistemic risk could come
to the conclusion that she should not adopt risk-free credences because from a perspec-
tive of nonuniform credences the risk-free distribution might not minimize risk in expec-
tation. However, we should avoid reference to expected epistemic risk altogether, espe-
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Pettigrew (2016a) argues for the Laplacean POI from considerations of
accuracy, as measured by the Brier score, and a minimax decision rule. On
the approach we have developed, a more general result follows: the require-
ment to identify the prior that minimizes epistemic risk under a convex and
symmetric risk function will always suggest the same credence function as
the ordinary Laplacean POI. But this is not an argument for the uniform
prior. Rather, it suggests that we have a family of indifference principles asso-
ciated with different epistemic risk functions. And whether an agent finds the
Laplacean POI attractive depends on her normative judgments regarding the
relative severity of approaching different types of graded error.

The notion, due especially to Jaynes (1957), that the right prior is to be
found by identifying the maximum entropy distribution is a combination
of two separate normative principles: (a) that one ought to minimize episte-
mic risk and (b) that one ought to evaluate epistemic risk using a convex,
symmetric function. The framework developed here enables us to distin-
guish the two principles: even if we agree that minimizing epistemic risk is
desirable, the appropriate prior may not be uniform. Therefore, the Jaynesian
commitment to maximum entropy priors is a commitment to a particular at-
titude to how much risk is rationally permissible (as little as possible) and
how different types of errors are to be evaluated (equally). These are strong
normative assumptions that, despite the size of the literature on the problem
of the priors and the principle of maximum entropy, had not been adequately
addressed.

Appendix

Theorem 1. For strictly concave and twice differentiable entropy func-
tion H and risk function R defined on [0, 1], R( p) 1 H ( p) 5 k, where
k 5 minpR( p) 5 maxpH( p).

Proof. Recall that R( p) 5
Ð p*
p js1(t) 2 s0(t)j dt, where p*5 arg maxp∈½0,1�

H ( p). This implies that H( p*) 5 k, and, given the conditions on entropy, it
also implies thatH 0( p*) 5 0 andH 00( p*) < 0. These conditions are satisfied
if s is strictly proper.

cially in the context of identifying a prior, in part because it is not clear what credences
such an agent would use to compute an expectation. Indeed, as noted in sec. 6, the rel-
evant underlying random quantity is accuracy, and we have defined risk as a function of
its expectation. Therefore, when we consider risk in identifying a prior, we suppose that
the agent is aware of the form of her risk function and ask which credences, if she were
to adopt them, would in fact minimize that function.
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Existence of risk-free point.—Since H( p) is a strictly concave continu-
ous function that is closed and bounded on [0, 1], the extreme value theo-
rem guarantees that p* exists.

Duality of risk and entropy.—Savage (1971) shows that we can express
sv( p) in terms of strictly concave and continuous H( p) as follows:

s1( p) 5 H( p) 1 (1 2 p)H 0( p) s0( p) 5 H( p) 2 pH 0( p)

Let h( p) 5 s1( p) 2 s0( p). We can expand h(p) in terms of the entropy H(p):

h( p) 5 ½H( p) 1 (1 2 p)H 0( p)� 2 ½H( p) 2 pH 0( p)�
5 (1 2 p)H 0( p) 1 pH 0( p)

5 H 0( p):

Therefore,
Ð p*
p h(t) dt 5

Ð p*
p H

0(t) dt 5 H( p*)2H( p). SinceR( p)5
Ð p*
p jh(t)j dt,

we can use the preceding identity to evaluate R( p) in parts.

For s1( p) > s0( p),

R( p) 5

ðp*

p

h(t) dt

5 H( p*) 2 H( p)

5 k 2 H( p)

For s0( p) > s1( p),

R( p) 5 2

ðp

p*
h(t) dt

5 2½H( p) 2 H( p*)�
5 k 2 H( p)

For s0( p) 5 s1( p),

R( p) 5

ðp*

p

h(t) dt

5 k 2 k 5 0

QED

Theorem 2. Given a random variable X : S →W , where the underlying
scoring rule s is strictly proper, and two cdfs P and Q, if P is a mean-
preserving epistemic spread of Q, then R(P) > R(Q).

Proof. Suppose P is a mean-preserving epistemic spread of Q. ThenH(Q) >
H (P). Let P* be the risk-free credence function so that H(P*) 5 R(P*) 5 0.
Then given our general expression of epistemic risk in terms of entropic
change, H (P*) 2 H (Q) < H (P*) 2 H (P). Therefore, R(P) > R(Q). QED

Theorem 3. Given a random variable X : S→W , whereW ⊆R is the im-
age of scoring rule s, let V 5 fP1, ::: , Png be a set of cdfs for X. Given a
random variable Y : S→W *, where W * ⊆R is the image of scoring rule
s*, let U 5 fQ1, ::: ,Qng be a set of corresponding cdfs for Y. This means
that for each outcome h ∈ S, the probability assigned to h by Pi is equal to
the probability assigned to h by Qi, but whereas in the first case the out-
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come h is described by s, in the second case it is described by s*. Suppose
(1) s and s* are truth-directed scoring rules, whose risk functions R and R*

are such that (2) R00 > 0, R*00 > 0, and (3) arg min R 5 arg min R*. Then
R(Pi) > R(Pj) if and only if R(Qi) > R(Qj).

Proof. Sufficiency: assume R(Pi) > R(Pj) for arbitrary i ≠ j. Recall that
R(P) 5 E½P*� 2 E½P�, where P* 5 maxP∈VE½P� is the risk-free cdf. Condi-
tions 2 and 3, together with the extreme value theorem, imply that P* ex-
ists. Condition 3 implies that P* 5 Q*. Finally, condition 1 implies that, if
E½Pi� > E½Pj�, then E½Qi� > E½Qj�. Therefore,

R(Pi) > R(Pj)j
→ E½P*� 2 E½Pi� > E½P*� 2 E½Pj�
→ E½P* 2 Pi� > E½P* 2 Pj�
→ E½Q* 2 Pi� > E½Q* 2 Pj�
→ E½Q* 2 Qi� > E½Q* 2 Qj�
→ R(Qi) > R(Qj):

Necessity: The procedure above is reversible (i.e., the expressions remain
true if we swap Q’s for P’s and W for V ). QED
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